Тождественные преобразования, функции, уравнения и системы на Ломоносове
Ошибка.
Попробуйте повторить позже
Про функцию известно, что она определена и непрерывна на всей числовой прямой, нечётна и периодична с
периодом
а также что
Какое наименьшее число корней может иметь уравнение
на отрезке
Поскольку функцня нечётна и определена в нуле, получаем
В силу 5-периодичности тогда имеем . Используем ещё раз нечётность:
, и опять в силу
5-периодичности
и
Итак, в точках и 4 значения функции равны соответственно
и
Значит, на каждом из трёх интервалов между этими
точками есть не менее одного нуля функции
.
Итого на периоде у функции не менее 4 нулей (ясно, что эта оценка достижнма: можно взять, например, кусочно-линейную
функцию, у неё будет ровно 4 нуля). На промежутке
период помещается 52 раза (на нём не менее
нулей), плюс нуль в точке
и хотя бы один на интервале
Итого не менее 210 нулей (210 нулей уже
возможно).
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!