Тождественные преобразования, функции, уравнения и системы на Ломоносове
Ошибка.
Попробуйте повторить позже
Решите уравнение
Источники:
Подсказка 1
На первый взгляд в голову приходит только раскрытие скобок. Что ж, здесь это сделать просто, поэтому сделаем это)
Подсказка 2
Хм, многочлен четвёртой степени... Такое просто так не решишь. Разложить на множители не получается. Можно заметить, что коэффициенты этого уравнения с точностью до знаков симметричны! Но пока не особо понятно, как это может помочь( А давайте подумаем над следующей идеей: может, можно привести это уравнение к квадратному? Сразу это сделать не получается, но можно, например, преобразовать этот многочлен так, чтобы максимальная степень была равна 2...
Подсказка 3
Сделать это можно, разделив уравнение на x², предварительно заметив, что x ≠ 0. А теперь можно погруппировать слагаемые, так как теперь вся надежда на замену!
Подсказка 4
Ура, здесь можно сделать замену t = x - 1/x. Остаётся только решить получившееся квадратное уравнение и сделать обратную замену! Подобные уравнения, в которых коэффициенты симметричны, часто решаются с помощью деления на x², запомните этот приём)
Раскроем скобки:
не является корнем уравнения, поэтому поделим обе части на
Сделаем замену Тогда и получаем
Обратная замена:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!