Тема . Ломоносов

Алгебраические текстовые задачи на Ломоносове

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89255

Два вкладчика вложили деньги в общее дело. После этого один из них добавил ещё 1 млн р., в результате чего его доля в общем деле увеличилась на 0,05, а когда он добавил ещё 1 млн р., его доля увеличилась ещё на 0,04. Сколько денег ему нужно добавить ещё, чтобы увеличить свою долю ещё на 0,06  ?

Показать ответ и решение

Пусть изначально суммарный вклад составлял y  миллионов рублей, из них x  миллионов рублей — первого вкладчика. Тогда его доля составляла x
y  . После того, как первый добавил 1 млн рублей, суммарно вклад составил (y+ 1)  млн рублей, из них (x+ 1)  — первого вкладчика. Тогда его доля возросла до x+1
y+1  . По условию:

x +1   x
y-+1 − y = 0,05

Умножим обе части на y⋅(y+ 1):

(x+1)⋅y− x⋅(y+1)= 0,05⋅(y+ 1)⋅y

y− x= 0,05y(y +1)

После того как он снова добавил 1 млн рублей, общая сумма вклада стала равна (y +2)  млн рублей, из них (x+ 2)  — первого вкладчика. По условию:

x+ 2  x+ 1
y+-2 − y+-1 =0,04

Умножим обе части на (y+ 1)⋅(y+ 2):

(x +2)⋅(y+1)− (x+1)⋅(y+2)= 0,04⋅(y+ 1)⋅(y+ 2)

y− x= 0,04(y+1)(y +2)

Тогда:

0,05y(y+ 1)= 0,04(y+ 1)(y+ 2)

0,05y = 0,04(y+ 2)

5y = 4(y+ 2)

y = 8

Из условия:

y− x= 0,05y(y +1)

Получим:

8− x= 0,05⋅8⋅9

x= 8− 3,6

x= 4,4

Если тот же вкладчик добавит ещё k  млн рублей, то его доля составит x+2+k
y+2+k  . При найденных значениях x  и y  решим относительно k  уравнение, составленное из условия задачи:

4,4+2-+k − 4,4+-2= 0,06
 8+ 2+ k   8+ 2

64 +10k− 6,4(10+ k)= 0,6(10+ k)

64+10k= 70+ 7k

3k= 6

k= 2

Таким образом, для того, чтобы достичь требуемого, вкладчик должен добавить 2 млн рублей.

Ответ: 2 млн р.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!