Планиметрия на Ломоносове
Ошибка.
Попробуйте повторить позже
В треугольнике площадь которого равна
проведена медиана
Найдите радиус окружности, описанной около треугольника
если известно, что
а центр окружности, вписанной в треугольник
лежит на окружности, описанной около
треугольника
Источники:
Подсказка 1
Сначала обозначим центр вписанной окружности △ACD как точку I. Тогда по условию BDIC — вписанный. Можем ли мы что-то сказать про углы BDIC? Например, угол DIC образован биссектрисами, он должен хорошо считаться через углы △ABC.
Подсказка 2
Конечно, он равен 90 + ∠A/2 (это несложно доказывается через сумму углов треугольника). Тогда, пользуясь свойством вписанного ч/у мы можем посчитать ∠B, он будет равен 90 - ∠A/2. Посчитаем для интереса оставшийся ∠C. Может быть, сможем что-нибудь сказать про △ABC.
Подсказка 3
Опа, а ведь ∠B = ∠C. Тогда △ABC равнобедренный. Это уже здорово! Ведь мы можем найти радиус описанной окружности по теореме синусов, а раз теперь имеем равнобедренный треугольник, то сможем скорей всего посчитать синус какого-нибудь угла! Тогда логичный ход — опустить высоту AH, H будет серединой BC. А теперь можно и составить кое-какие уравнения!
Подсказка 4
Первое уравнение, конечно, будет на площадь △ABC. А второе — теорема Пифагора для △AHB. Из получившейся системы найдём синус ∠B, задача решена! Не волнуйтесь, что получилось два ответа, так и должно быть)
Пусть — центр окружности, вписанной в треугольник
. Тогда
и
— биссектрисы углов
и
соответственно, а
по свойству вписанных углов имеем
. Значит, треугольники
и
равны (по стороне и двум углам), поэтому
, т.е. треугольник
равнобедренный.
Обозначив , из условия на площадь треугольника
получаем
или
, причём оба найденных значения
реализуются в условиях задачи: одно
получается для острого угла
, а другое
— для тупого. Подставляя их в формулу для искомого радиуса описанной около треугольника
окружности
получаем два возможных ответа: и
.
или
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!