Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#82779

Живописец закрасил акварелью полумесяц на клетчатой бумаге. Контур полумесяца состоит из двух дуг — одна от окружности с центром в (0;0)  , проходящей через (0;1)  , другая — от окружности с центром в (1;0)  , проходящей через (0;1)  . К утру краска расплылась так, что каждая точка полумесяца превратилась в круг радиуса 1∕2.

PIC

Найдите площадь получившейся фигуры.

Источники: Ломоносов - 2024, 11.2 (см. olymp.msu.ru)

Показать ответ и решение

Пусть рисунок расплылся на радиус r  . К площади полумесяца прибавятся «поля», которые можно разбить на левое, правое и два закругления на концах рогов.

PIC

Площадь полумесяца равна половине площади круга радиуса 1  минус сегмент круга радиуса √-
 2.

π − 2π-− 4 =1
2    4

Площадь левого поля ”— половина от площади кольца с радиусами 1  и 1 +r  :

π(1+-r)2− π-
    2

Площадь правого поля ”— четверть от площади кольца с радиусами √2  и √2 − r  :

π(√2)2− π(√2− r)2
-------4--------

Закругления на концах рогов вместе составляют три четверти окружности радиуса r  :

3  2
4πr

Вместе получается:

   π(1+ r)2 − π  π(√2)2− π(√2-− r)2 3
1+ ----2-----+ -------4-------+ 4πr2 =

            √ -                    √-
1+πr + π r2 + π-2r− πr2+ 3πr2 = 1+(1+-2)r+ πr2
       2     2    4    4            2

И тогда ответ:

   3π  π√2-
1+  4 +  4
Ответ:

   3π  π√2-
1+  4 +  4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!