Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88173

Две окружности касаются внутренним образом в точке K  . В большей окружности проведена хорда AB  , касающаяся меньшей окружности в точке L  . Найдите BL,  если AL = 10  и AK  :BK = 2:5.

Источники: Ломоносов - 2011, 11.5 и Бельчонок - 2019, 11.3

Подсказки к задаче

Подсказка 1

Посмотрим на картинку. Было бы очень удобно, если бы оказалось, что KL — биссектриса... Попробуем это доказать.

Подсказка 2

Пусть общая касательная к окружностям пересечет AB в точке S. Поотмечайте углы.

Подсказка 3

Воспользуйтесь теоремой о внешнем угле треугольника.

Показать ответ и решение

Покажем, что KL  является биссектрисой угла AKB  (это утверждение называется леммой Архимеда и при правильной формулировке может быть использовано на олимпиаде без доказательства). Тогда по свойству биссектрисы получим

BL- = BK--= 5  BL = 5⋅10= 25
 AL   AK    2       2

______________________________________________________________________________________________________

Способ 1. Пусть общая касательная к окружностям пересекает прямую AB  в точке S.  Пусть ∠SKA  = α,∠AKL  =β.  Отрезки SK  и SL  равны как отрезки касательных, проведенных из точки S  к меньшей окружности, следоваетельно,

∠SLK  =∠SKL  = ∠SKA  +∠AKL  = α +β

По теореме об угле между касательной и хордой верно, что ∠KBA  = ∠SKA = α.  Наконец, по теореме о внешнем угле в треугольнике LKB,

∠LKB  = ∠KLA  − ∠KBL  = (α +β )− α = β

PIC

_______________________________________________________________________________________________________

Способ 2. Рассмотрим гомотетию с центром в точке K,  переводящую меньшую окружность в большую. Пусть прямая KL  пересекает большую окружность в точке W,  тогда прямая AB  под действием гомотетии переходит в касательную к большей окружности, проведенную в точке W.  Таким образом, данная касательная паралельна AB,  то есть W  является серединой меньшей дуги AB  большей окружности.

PIC

_______________________________________________________________________________________________________

Способ 3. Пусть W  — середина меньшей дуги окружности AB  большей окружности. Рассмотрим инверсию с центром в точке W  и радиусом W A.  Точки A  и B  под действием инверсии останутся на месте, следовательно, прямая AB  переходит в окружность, проходящую через точки A,  B,  и центр окружности инверсии — W,  то есть в большую окружность. Наконец, меньшая окружность переходит в окружность, которая касается образа большей окружности и образа прямой AB  и гомотетична своему пробразу с центром в W,  то есть остается на месте, то есть точка L  перейдет в точку K,  а значит, прямая KL  проходит через центр инверсии — W.

PIC

Ответ: 25

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!