Тема . Ломоносов

Теория чисел и десятичная запись на Ломоносове

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70323

Дано простое число p.  Решите в натуральных числах уравнение

 2  2
x = y +2010p
Показать ответ и решение

 2010= 2⋅3⋅5⋅67;

Преобразуем исходное уравнение

 2   2
x  − y = 2010p⇔ (x− y)(x +y)= 2⋅3⋅5⋅67

Заметим, что x− y  и x+ y  одинаковой четности, так как x+ y = x− y+ 2y.

Поэтому, так как 2010  четно, обе скобки тоже должны быть четными. И тогда p= 2,  иначе

           .
(x− y)(x +y)..4,

но 2010p  не кратно 4.

Получаем

(x− y)(x+ y)= 22⋅3⋅5⋅67

Поскольку x,y ∈ℕ,  обе скобки положительные, а также x +y > x− y.

Следовательно, возможны только следующие случаи:

⌊ x− y = 2⋅3⋅5 и  x+ y = 2⋅67
|| x− y = 2⋅3 и  x+ y = 2⋅5⋅67
||⌈ x− y = 2⋅5 и  x+ y = 2⋅3⋅67
  x− y = 2 и  x+ y = 2⋅3⋅5⋅67

Решив систему уравнений в натуральных числах в каждом из случаев, получаем ответ.

Ответ:

 (82,52),(338,332),(206,196),(1006,1004)  при p= 2,  иначе решений нет.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!