Неравенства и оптимизация на СПБГУ
Ошибка.
Попробуйте повторить позже
Положительные числа таковы, что
. Найдите минимальное значение выражения
Источники:
Подсказка 1
Давайте поймем, что в нашем арсенале доказательства неких неравенств, оценок и прочего, зачастую есть только «смекалочка» и неравенство Коши. Смекалочка нужна, чтобы правильно сгруппировать, а Коши, чтобы верно оценить. Давайте поймем, почему нам удобно группировать слагаемые в виде a^7 * b + a * b ^3?
Подсказка 2
Потому что, по неравенству Коши, получается хорошая оценка на каждую такую сумму. Хорошая это, потому, что полученная сумма - сумма квадратов выражения, на которое у нас есть условие. А как у нас связана сумма квадратов и квадрат суммы неравенством?
Подсказка 3
Существует неравенство a^2 + b^2 + c^2 >= ab + bc + ac(доказывается по Коши), которое можно переписать в удобном для нас виде: 3(a^2 + b^2 + c^2) >= (a + b + c)^2. Какая тогда оценка получается на наше выражение? А достигается ли она? А в какой точке?
По неравенству о средних (аналогично для других пар). Значит
по неравенству Коши
Равенство достигается при
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!