Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#49010

Точка M  — середина стороны AD  параллелограмма ABCD.  Прямая CM  наклонена к основанию AD  под углом 30∘ . Вершина  B  равноудалена от прямой CM  и вершины A  . Найти углы параллелограмма. Найти площадь параллелограмма, если длина основания   AD  равна 2.

Источники: Росатом - 2020, 11.6 (см. olymp.mephi.ru)

Показать ответ и решение

Первое решение.

PIC

Пусть BH =x.  Тогда

По условию BH = AB = CD = x;

∠CMD  =∠BCH  = 30∘ ⇒ в △HBC BC = 2⋅BH = 2x;

BC =AD  =2x⇒ AM  = MD = x;

Тогда в △MDC

                     ∘            ∘
MD  =DC = x; ∠CMD = 30 ⇒ ∠MCD  =30

Следовательно, ∠BCD = 60∘, ∠CDA = 120∘

Теперь легко посчитать площадь параллелограмма:

∠BCD  = 60∘;CD =1;BC = 2⇒

SABCD =sin(60∘)⋅1⋅2= √3

Второе решение.

PIC

Опустим перпендикуляр BH  на CM  , отметим середину N  отрезка BC  и обозначим E  — точку пересечения BH  и AN  . Тогда AB = BH = 2BE  , так как AN ∥CM  и N  — середина BC  . Тогда треугольник ABE  прямоугольный и AB = 2BE  . Значит ∠ABE  =60∘ и ∠NAB = 30∘ . Так же ∠NAM  =∠MCD  = 30∘ из параллельности и поэтому AN  биссектриса угла BAM.  Четырехугольник ABNM  является параллелограммом и при этом AN  биссектриса угла BAM  . Значит ABNM  ромб и BM ⊥ AN  , но BH ⊥ AN  . Значит, M = H.

PIC

Тогда AB = AM  и ∠ABM  = 60∘ . Значит, треугольник ABM  равносторонний со стороной AM  = AD2-=1  . Тогда SAMB = √34  , SABNM  = √3
         2  и SABCD =√3.

Ответ:

 60∘

  ∘
120

√-
 3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!