Планиметрия на Росатоме
Ошибка.
Попробуйте повторить позже
Длина стороны четырехугольника
вписанного в окружность равна 5 . Точка
делит эту сторону в отношении
, а прямые
и
параллельны сторонам
и
соответственно. Найти длину стороны
четырехугольника.
Прямые и
параллельны, поэтому углы
и
равны (обозначены на рисунке цифрой 2 ), аналогично равны углы
и
(обозначены на рисунке цифрой 3). Отсюда следует подобие треугольников
и
с коэффициентом подобия 4 и
равенство углов
и
(обозначены на рисунке цифрой 1). Заметим, что
.
Покажем, что треугольник подобен треугольникам
и
, вершины треугольников перечислены в порядке
соответствия. Углы
и
, полученные при пересечении прямой
параллельными прямыми
и
, равны как
внутренние накрест лежащие. Сумма углов
и
равна
, как сумма противоположных углов
вписанного в окружность четырёхугольника. Значит, угол
и треугольник
подобен треугольникам
и
.
Положим и
, тогда
и
. Треугольники
и
подобны с коэффициентом подобия
, и
стороны
и
треугольника
соответствуют сторонам
и
треугольника
, поэтому
. Значит,
и, треугольники
и
подобны с коэффициентом подобия 2. Следовательно, сторона
в два раза длиннее стороны
, т.е.
длина стороны
равна 2.
Ошибка.
Попробуйте повторить позже
На сторонах и
остроугольного треугольника
вовне построены два равных прямоугольника
и
. Найдите
расстояние между вершинами
и
прямоугольников, если длины сторон
и
равны
и
соответственно, а угол при
вершине
треугольника равен
.
Источники:
Поскольку прямоугольники равны, то , откуда их диагонали
. Заметим, что
, откуда
. Тогда из равнобедренного
легко найти
.
Ошибка.
Попробуйте повторить позже
Точка — середина стороны
параллелограмма
Прямая
наклонена к основанию
под углом
. Вершина
равноудалена от прямой
и вершины
. Найти углы параллелограмма. Найти площадь параллелограмма, если длина основания
равна
Источники:
Первое решение.
Пусть Тогда
Тогда в
Следовательно,
Теперь легко посчитать площадь параллелограмма:
Второе решение.
Опустим перпендикуляр на
, отметим середину
отрезка
и обозначим
— точку пересечения
и
. Тогда
, так как
и
— середина
. Тогда треугольник
прямоугольный и
. Значит
и
. Так же
из параллельности и поэтому
биссектриса угла
Четырехугольник
является параллелограммом и при этом
биссектриса угла
. Значит
ромб и
, но
. Значит,
Тогда и
. Значит, треугольник
равносторонний со стороной
. Тогда
,
и
Ошибка.
Попробуйте повторить позже
На сторонах и
треугольника
расположены точки
и
так, что
. Точка
– середина отрезка
, точка
– середина стороны
Угол при вершине
треугольника
равен
Найти длину отрезка
Источники:
Первое решение.
Давайте вспомним, что отрезок между серединками каких-то сторон может быть удобно посчитать через векторы:
Тем более нам дан угол между векторами и
— он равен углу между векторами
и
(ведь
сонаправлен
, а
сонаправлен
) то есть
градусам. Осталось вспомнить, что длина связана со скалярным
квадратом:
Раскрываем квадрат суммы:
Отсюда
Второе решение.
Давайте заметим, что если сдвинуть точку и
по стороне
на вектор
, то условие останется выполненным, а точки
и
сдвинуться на вектор
. Значит длина
не измениться. Аналогично, можно сдвинуть точки
и
вдоль
так, чтобы условие и
длина
сохранилась. Сдвинем
и
в точку
и получим.
Тогда ,
и
. Значит, перед нами равносторонний треугольник и
медиана в нем. Значит, ее
длина равна
Ошибка.
Попробуйте повторить позже
Около выпуклого четырехугольника , диагонали которого перпендикулярны и по длине равны 5 и 6, можно описать окружность с
центром в точке
. Найдите площадь четырехугольника
.
Пусть хорды и
стягивают дуги с центральными углами
и
соответственно. Тогда в силу перпендикулярности диагоналей,
хорды
и
стягивают дуги с центральными углами
и
. То есть имеем
Сумма площадей треугольников и
равна:
где - радиус описанной окружности.
Сумма площадей треугольников и
равна:
Таким образом, площадь четырехугольника равна половине площади четырехугольника
, равной
Ошибка.
Попробуйте повторить позже
Математический бильярд имеет форму параллелограмма . На сторонах
и
соответственной расположены точки
и
так, что
, а
. Шар находится в точке
пересечения прямых
и
. Известно, что шар,
направленный в точку
борта
, отразившись от четырех различных бортов, вернулся в точку
и, продолжив свое движение,
повторил свою предыдущую траекторию. Найти величину отношения
:
, если известно, что траектория шара — выпуклый
четырехугольник.
Рассмотрим траекторию движения, следуя правилу "угол падения равен углу отражения". Пусть эти углы равны для случаев
отражения от бортов
,
,
,
соответственно. Тогда выполняются равенства
и
из тех
соображений, что противоположные углы параллелограмма равны. Из этих равенств вытекает, что
и
, из чего, в свою
очередь, следует, что
– прямоугольник.
Введём аффинную систему координат, в которой ,
,
,
и выпишем уравнения прямых
и
.
Поскольку
и
, прямые
и
задаются уравнениями:
соответственно, а их точкой пересечения будет
Теперь отразим прямоугольник зеркально сначала от стороны
, затем от стороны, в которую перешла
при этом
отражении, и далее для двух оставшихся сторон по тому же принципу. Это стандартная процедура "выпрямления"бильярдной траектории,
соответствующая равенству угла падения углу отражения.
При таких "зеркальных"отражениях траектория становится отрезком , где
- образ точки
после серии отражений. Её
координаты легко вычислить: после четырёх отражений прямоугольник сохранил ориентацию, и сдвинулся на два размера влево и на
два размера вверх. Таким образом,
, и прямая
имеет угловой коэффициент
. Её уравнением
будет
и прямую , заданную уравнением
, она пересекает в точке с абсциссой
. Это значит, что точка
, в которую был
направлен шар, делит отрезок
в отношении
.
Ошибка.
Попробуйте повторить позже
Около четырёхугольника можно описать окружность. Длины сторон
и
равны. На стороне
расположена точка
так, что
, а на стороне
— точка
так, что
При этом
. Найти длину отрезка
.
Пусть и
Тогда так как
Из точки
проведём луч
такой, что
и
Тогда — биссектриса угла
Отразим точку
относительно прямой
Пусть при отражении
перейдет в какую-то
точку
при этом
принадлежит
Тогда в силу симметрии треугольники
и
равны, то есть
и
а так же
Аналогично, — биссектриса угла
Заметим, что если мы отразим точку
относительно прямой
в какую-то точку
на
то отрезки
и
будут равны. Получается, что
откуда точки
и
совпадают. В силу
симметрии треугольники
и
равны, то есть
и
Заметим, что по свойству вписанного четырёхугольника. Отсюда точки
лежат на одной прямой, то есть
3