Тема Росатом

Планиметрия на Росатоме

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#76941

Длина стороны AD  четырехугольника ABCD  вписанного в окружность равна 5 . Точка M  делит эту сторону в отношении AM  :MD = 1:4  , а прямые MC  и MB  параллельны сторонам AB  и CD  соответственно. Найти длину стороны BC  четырехугольника.

Показать ответ и решение

PIC

Прямые MB  и CD  параллельны, поэтому углы BMA  и CDA  равны (обозначены на рисунке цифрой 2 ), аналогично равны углы BAM и CMD  (обозначены на рисунке цифрой 3). Отсюда следует подобие треугольников BAM  и CMD  с коэффициентом подобия 4 и равенство углов ABM  и MCD  (обозначены на рисунке цифрой 1). Заметим, что ˆ1 +ˆ2+ ˆ3= π  .

Покажем, что треугольник MBC  подобен треугольникам BAM  и CMD  , вершины треугольников перечислены в порядке соответствия. Углы DCM  и BMC  , полученные при пересечении прямой CM  параллельными прямыми MB  и CD  , равны как внутренние накрест лежащие. Сумма углов BCD  = BCM + ˆ1  и BAD = ^3  равна π  , как сумма противоположных углов вписанного в окружность четырёхугольника. Значит, угол BCM = ˆ2  и треугольник MBC  подобен треугольникам BAM  и CMD  .

Положим p:= BA  и q :=BM  , тогда CM  =4p  и CD = 4q  . Треугольники BAM  и MBC  подобны с коэффициентом подобия   pq  , и стороны BA  и BM  треугольника BAM  соответствуют сторонам MB  и MC  треугольника MBC  , поэтому pq =4qp  . Значит, q =2p  и, треугольники BAM  и MBC  подобны с коэффициентом подобия 2. Следовательно, сторона BC  в два раза длиннее стороны AM  , т.е. длина стороны BC  равна 2.

Ответ: 2

Ошибка.
Попробуйте повторить позже

Задача 2#46042

На сторонах AB  и AC  остроугольного треугольника ABC  вовне построены два равных прямоугольника AMNB  и APQC  . Найдите расстояние между вершинами N  и Q  прямоугольников, если длины сторон AB  и AC  равны 3  и 4  соответственно, а угол при вершине A  треугольника равен   ∘
30 .

Источники: Росатом-20, 11.6 (см. mephi.ru)

Показать ответ и решение

PIC

Поскольку прямоугольники равны, то BN  =AC = 4,AB = CQ = 3  , откуда их диагонали AQ = AN =5  . Заметим, что ∠CAQ + ∠BAN  =∠CAQ  +∠AQC = 90∘ , откуда ∠NAQ  =90∘+ 30∘ = 120∘ . Тогда из равнобедренного △ANQ  легко найти       √-
NQ = 5 3  .

Ответ:

 5√3

Ошибка.
Попробуйте повторить позже

Задача 3#49010

Точка M  — середина стороны AD  параллелограмма ABCD.  Прямая CM  наклонена к основанию AD  под углом 30∘ . Вершина  B  равноудалена от прямой CM  и вершины A  . Найти углы параллелограмма. Найти площадь параллелограмма, если длина основания   AD  равна 2.

Источники: Росатом - 2020, 11.6 (см. olymp.mephi.ru)

Показать ответ и решение

Первое решение.

PIC

Пусть BH =x.  Тогда

По условию BH = AB = CD = x;

∠CMD  =∠BCH  = 30∘ ⇒ в △HBC BC = 2⋅BH = 2x;

BC =AD  =2x⇒ AM  = MD = x;

Тогда в △MDC

                     ∘            ∘
MD  =DC = x; ∠CMD = 30 ⇒ ∠MCD  =30

Следовательно, ∠BCD = 60∘, ∠CDA = 120∘

Теперь легко посчитать площадь параллелограмма:

∠BCD  = 60∘;CD =1;BC = 2⇒

SABCD =sin(60∘)⋅1⋅2= √3

Второе решение.

PIC

Опустим перпендикуляр BH  на CM  , отметим середину N  отрезка BC  и обозначим E  — точку пересечения BH  и AN  . Тогда AB = BH = 2BE  , так как AN ∥CM  и N  — середина BC  . Тогда треугольник ABE  прямоугольный и AB = 2BE  . Значит ∠ABE  =60∘ и ∠NAB = 30∘ . Так же ∠NAM  =∠MCD  = 30∘ из параллельности и поэтому AN  биссектриса угла BAM.  Четырехугольник ABNM  является параллелограммом и при этом AN  биссектриса угла BAM  . Значит ABNM  ромб и BM ⊥ AN  , но BH ⊥ AN  . Значит, M = H.

PIC

Тогда AB = AM  и ∠ABM  = 60∘ . Значит, треугольник ABM  равносторонний со стороной AM  = AD2-=1  . Тогда SAMB = √34  , SABNM  = √3
         2  и SABCD =√3.

Ответ:

 60∘

  ∘
120

√-
 3

Ошибка.
Попробуйте повторить позже

Задача 4#49011

На сторонах AB  и BC  треугольника ABC  расположены точки M  и N  так, что AM  =CN  =√3-  . Точка P  – середина отрезка MN  , точка Q  – середина стороны AC.  Угол при вершине B  треугольника ABC  равен   ∘
60.  Найти длину отрезка P Q.

Источники: Росатом-19, 11.6 (см. mephi.ru)

Показать доказательство

Первое решение.

Давайте вспомним, что отрезок между серединками каких-то сторон может быть удобно посчитать через векторы:

                                         −−→   −−→
−P−→Q = Q− P = A+-C-− M-+N-= A-−-M + C−-N-= MA-+-NC-
              2      2      2       2       2

Тем более нам дан угол между векторами AM  и CN  — он равен углу между векторами AB  и CB  (ведь −A−M→  сонаправлен −A→B  , а −C−→N  сонаправлен −C−→B  ) то есть 60  градусам. Осталось вспомнить, что длина связана со скалярным квадратом:

                  ∘------  ∘-----  ┌│ (−−→--−−→-)-2
P Q= |−−→PQ|= |−−−P−→Q|=  |−−−−P→Q|2 = −−−−P→Q2 = ││∘ (AM-+CN-)
                                          2

Раскрываем квадрат суммы:

(2PQ )2 = −A−→M2 + −−C→N2 +2(−−A→M,−C−→N )= AM2 + CN2+ 2⋅AM ⋅CN ⋅cos∠ (−A−M→, −C−→M )= 3+3 +2⋅3⋅ 1 = 9
                                                                         2

Отсюда 2PQ =3.

Второе решение.

PIC

Давайте заметим, что если сдвинуть точку C  и N  по стороне B  на вектор v  , то условие останется выполненным, а точки P  и   Q  сдвинуться на вектор v
2  . Значит длина PQ  не измениться. Аналогично, можно сдвинуть точки A  и M  вдоль AB  так, чтобы условие и длина PQ  сохранилась. Сдвинем N  и M  в точку B  и получим.

PIC

Тогда P = B  ,           √-
AB = AC =  3  и ∠ABC = 60∘ . Значит, перед нами равносторонний треугольник и PQ  медиана в нем. Значит, ее длина равна 32.

Ошибка.
Попробуйте повторить позже

Задача 5#68258

Около выпуклого четырехугольника ABCD  , диагонали которого перпендикулярны и по длине равны 5 и 6, можно описать окружность с центром в точке O  . Найдите площадь четырехугольника ABCO  .

Показать ответ и решение

PIC

Пусть хорды BC  и AB  стягивают дуги с центральными углами α  и β  соответственно. Тогда в силу перпендикулярности диагоналей, хорды AD  и CD  стягивают дуги с центральными углами 180∘− α  и 180∘− β  . То есть имеем

∠BOC  =α, ∠BOA = β, ∠AOD = 180∘ − α, ∠DOC = 180∘− β

Сумма площадей треугольников BCO  и ABO  равна:

SBCO +SABO = 1R⋅R sinα+ 1R ⋅Rsinβ =
             2         2

= 1R2(sinα+ sinβ),
  2

где R  - радиус описанной окружности.

Сумма площадей треугольников ADO  и CDO  равна:

             1 2
SADO+ SCDO = 2R (sin(π − α)+ sin(π − β))=

  1  2
= 2R (sinα +sin β)=SBCO + SABO.

Таким образом, площадь четырехугольника ABCO  равна половине площади четырехугольника ABCD  , равной 12d1⋅d2 = 12 ⋅5⋅6 =15.

Ответ: 7,5

Ошибка.
Попробуйте повторить позже

Задача 6#76942

Математический бильярд имеет форму параллелограмма ABCD  . На сторонах AD  и CD  соответственной расположены точки E  и   F  так, что AE :ED =1 :2  , а DF :FC =1 :3  . Шар находится в точке M  пересечения прямых BF  и CE  . Известно, что шар, направленный в точку N  борта BC  , отразившись от четырех различных бортов, вернулся в точку M  и, продолжив свое движение, повторил свою предыдущую траекторию. Найти величину отношения BN  : NC  , если известно, что траектория шара — выпуклый четырехугольник.

Показать ответ и решение

Рассмотрим траекторию движения, следуя правилу "угол падения равен углу отражения". Пусть эти углы равны α ,α ,α ,α
 1  2 3  4  для случаев отражения от бортов BC  , AB  , AD  , CD  соответственно. Тогда выполняются равенства α1+ α4 = α2+α3  и α1+ α2 = α3+ α4  из тех соображений, что противоположные углы параллелограмма равны. Из этих равенств вытекает, что α1 = α3  и α2 = α4  , из чего, в свою очередь, следует, что ABCD  – прямоугольник.

PIC

Введём аффинную систему координат, в которой A(0;0)  , D(1;0)  , B(0;1)  , C(1;1)  и выпишем уравнения прямых CE  и BF  . Поскольку E(13;0)  и F(1;14)  , прямые CE  и BF  задаются уравнениями:

y = 3x− 1 и y = − 3x+1
   2   2       4

соответственно, а их точкой пересечения будет M (2;1).
   3 2

Теперь отразим прямоугольник ABCD  зеркально сначала от стороны AB  , затем от стороны, в которую перешла BC  при этом отражении, и далее для двух оставшихся сторон по тому же принципу. Это стандартная процедура "выпрямления"бильярдной траектории, соответствующая равенству угла падения углу отражения.

PIC

При таких "зеркальных"отражениях траектория становится отрезком MM ′ , где M ′ - образ точки M  после серии отражений. Её координаты легко вычислить: после четырёх отражений прямоугольник сохранил ориентацию, и сдвинулся на два размера влево и на два размера вверх. Таким образом, M ′(23 − 2;12 + 2)  , и прямая MM ′ имеет угловой коэффициент − 1  . Её уравнением будет

y =− x+ 7
        6

и прямую BC  , заданную уравнением y = 1  , она пересекает в точке с абсциссой x= 16  . Это значит, что точка N  , в которую был направлен шар, делит отрезок BC  в отношении 1:5  .

Ответ: 1 : 5

Ошибка.
Попробуйте повторить позже

Задача 7#100845

Около четырёхугольника ABCD  можно описать окружность. Длины сторон AB  и AD  равны. На стороне CD  расположена точка   Q  так, что DQ = 1  , а на стороне BC  — точка P  так, что BP = 2.  При этом ∠DAB = 2∠QAP  . Найти длину отрезка P Q  .

Показать ответ и решение

Пусть ∠DAQ  =α  и ∠P AB =β.

PIC

Тогда ∠QAP =α + β,  так как ∠DAB = 2∠QAP.  Из точки A  проведём луч AM  (M ∈ CD )  такой, что ∠MAQ  = α  и ∠MAP  = β.

Тогда AQ  — биссектриса угла DAM.  Отразим точку D  относительно прямой AQ.  Пусть при отражении D  перейдет в какую-то точку K,  при этом K  принадлежит AM.  Тогда в силу симметрии треугольники ADQ  и AKQ  равны, то есть KQ = DQ = 1  и ∠AKQ  =∠ADQ,  а так же AD =AK.

Аналогично, AP  — биссектриса угла BAM.  Заметим, что если мы отразим точку B  относительно прямой AP  в какую-то точку   K ′ на AM,  то отрезки AB  и AK ′ будут равны. Получается, что AK = AD = AB =AK ′,  откуда точки K  и K′ совпадают. В силу симметрии треугольники AKP  и ABP  равны, то есть KP = PB = 2  и ∠AKP = ∠ABP.

Заметим, что ∠QKP = ∠QKA  +∠AKP  =∠ADQ  +∠ABP  =180∘ по свойству вписанного четырёхугольника. Отсюда точки Q,K,P  лежат на одной прямой, то есть QP =QK + KP = 1+ 2= 3.

Ответ:

3

Рулетка
Вы можете получить скидку в рулетке!