Планиметрия на Росатоме
Ошибка.
Попробуйте повторить позже
На сторонах и
треугольника
расположены точки
и
так, что
. Точка
– середина отрезка
, точка
– середина стороны
Угол при вершине
треугольника
равен
Найти длину отрезка
Источники:
Первое решение.
Давайте вспомним, что отрезок между серединками каких-то сторон может быть удобно посчитать через векторы:
Тем более нам дан угол между векторами и
— он равен углу между векторами
и
(ведь
сонаправлен
, а
сонаправлен
) то есть
градусам. Осталось вспомнить, что длина связана со скалярным
квадратом:
Раскрываем квадрат суммы:
Отсюда
Второе решение.
Давайте заметим, что если сдвинуть точку и
по стороне
на вектор
, то условие останется выполненным, а точки
и
сдвинуться на вектор
. Значит длина
не измениться. Аналогично, можно сдвинуть точки
и
вдоль
так, чтобы условие и
длина
сохранилась. Сдвинем
и
в точку
и получим.
Тогда ,
и
. Значит, перед нами равносторонний треугольник и
медиана в нем. Значит, ее
длина равна
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!