Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68258

Около выпуклого четырехугольника ABCD  , диагонали которого перпендикулярны и по длине равны 5 и 6, можно описать окружность с центром в точке O  . Найдите площадь четырехугольника ABCO  .

Показать ответ и решение

PIC

Пусть хорды BC  и AB  стягивают дуги с центральными углами α  и β  соответственно. Тогда в силу перпендикулярности диагоналей, хорды AD  и CD  стягивают дуги с центральными углами 180∘− α  и 180∘− β  . То есть имеем

∠BOC  =α, ∠BOA = β, ∠AOD = 180∘ − α, ∠DOC = 180∘− β

Сумма площадей треугольников BCO  и ABO  равна:

SBCO +SABO = 1R⋅R sinα+ 1R ⋅Rsinβ =
             2         2

= 1R2(sinα+ sinβ),
  2

где R  - радиус описанной окружности.

Сумма площадей треугольников ADO  и CDO  равна:

             1 2
SADO+ SCDO = 2R (sin(π − α)+ sin(π − β))=

  1  2
= 2R (sinα +sin β)=SBCO + SABO.

Таким образом, площадь четырехугольника ABCO  равна половине площади четырехугольника ABCD  , равной 12d1⋅d2 = 12 ⋅5⋅6 =15.

Ответ: 7,5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!