Алгебраические текстовые задачи на Росатоме
Ошибка.
Попробуйте повторить позже
Ученикам на входе в школу разрешалось брать из коробки любое количество карандашей. Позже выяснилось, что не менее
карандашей, полученных любой группой из десяти человек, оказывались у одного ученика из этой группы. Докажите, что в школе есть
ученик, забравший более
карандашей, взятых всеми школьниками из коробки.
Источники:
Подсказка 1
Нам нужно доказать, что существует ученик, который взял достаточно много карандашей. Также есть условие про то, что в любой группе из 10 человек есть человек, который взял хотя бы 60 процентов карандашей из их группы. Это наталкивает на мысль упорядочить учеников по убыванию кол-ва взятых ими карандашей и доказывать что-то про ученика, который взял больше всех!
Подсказка 2
Давайте попробуем записать условие про группу из 10 человек, которые идут подряд по убыванию после нашего упорядочивания) Выйдет что-то вида x_k/(x_k + x_{k+1}+..+x_{k+9}) >= 0,6. Во что это можно преобразовать, чтобы получить оценку x_k через другой один x?
Подсказка 3
Например, можно получить что x_k >= 27/2 * x_{k+9}! Мы понимаем, что мы умеем оценивать x_1 через первые 10 иксов. А можем ли мы оценить теперь сумму вообще всех иксов через сумму первых десяти иксов?
Подсказка 4
Можем! С помощью нашего полученного неравенства) Остаётся только использовать обе эти оценки, чтобы получить оценку x_1 через сумму всех иксов, и станет понятно, что задача решилась!
Пусть ученики школы упорядочены по убыванию числа взятых ими карандашей: ученик под номером взял из коробки
карандашей
и
По условию для любого выполняется неравенство. Преобразуем его
То есть для любого
Тогда для любого
По условию
Суммируя прогрессию, получим неравенство.
Если в школе учеников, то
Итого, ученик под номером забрал более
карандашей.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!