Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68074

Петя и Вася пригласили одноклассников на свой день рожденья в дом Пети и посадили всех за круглый стол пить чай. Петя отметил для себя наименьшее число стульев, разделяющих его с каждым из приглашенных гостей, кроме Васи. Сложив полученные числа, он получил 60 . Найти число стульев за столом, если известно, что оно четное. Какое наименьшее число стульев разделяло Петю и Васю?

Источники: Росатом-2023, 11.1, Москва (см. olymp.mephi.ru)

Подсказки к задаче

Подсказка 1

Давайте попробуем для начала ввести удобные обозначения для количества людей между Петей и человеком. Заметим, что Петя считал наименьшие расстояния до людей на окружности. Тогда что особенного с подсчётом на ней? Можем ли мы просто пронумеровать подряд людей, и это будет правильно?

Подсказка 2

Верно, когда мы считаем наименьшее число на окружности, например, по часовой стрелке, то при переходе через середину это число уже не будет наименьшим, потому что мы могли пойти против часовой и получить меньшее число. Значит, мы нумеруем людей через подсчитанные расстояния Пети до середины, а потом в обратном порядке. Учитывая, что всего чётное число людей, найти сумму этих расстояний, включая Васю не составляет труда. Чтобы воспользоваться дальнейшим условием задачи, что хорошо ввести?

Подсказка 3

Да, можно ввести то, что спрашивают у нас в задаче. То есть пусть всего людей было 2n, а подсчитанное расстояние до Васи это y. Тогда мы понимаем как записывается то, что посчитал Петя и чему оно равно по условию. Также можно написать условие для расстояния до Васи, снова учитывая, что мы считаем его на окружности. У нас получилась система, решив которую для натурального n, мы получим ответы на задачу.

Показать ответ и решение

Пусть за столом стояло 2n  стульев (т.е. за столом сидело всего 2n  человек). На круге точками отмечены стулья. Числом рядом с точкой обозначено количество стульев, разделяющих Петю и человека, сидящего на этом стуле.

PIC

Тогда число стульев, посчитанных Петей, включая Васю, равно

                                                    2
2(1+ 2+ 3+ ⋅⋅⋅+(n− 2))+ (n− 1)= (n− 1)(n− 2)+(n− 1)=(n− 1)

Обозначим K
  B  число стульев, вычисленное для Васи. Тогда

({      2            ({          2             (|{           2
  (n − 1) − KB =60 ⇔   KB =(n− 1) − 60      ⇔   KB =√-(n − 1) − 60√-
( 0≤ KB ≤(n− 1)     ( 0≤ (n − 1)2− 60≤ (n− 1)  |( 1+  60≤ n≤ 3+-2241

Учитывая, что n∈ ℕ  , 8< 1+ √60  ,       √---
8< 3+--241< 10
      2  , получим единственное натуральное решение двойного неравенства: n = 9  . Тогда число стульев за столом равно 2n = 18  , а количество стульев, разделяющих Петю и Васю, KB = (n− 1)2− 60= 64− 60=  =4.

Ответ: за столом 18 стульев, разделяло минимум 4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!