Планиметрия на ФЕ
Ошибка.
Попробуйте повторить позже
Дан треугольник
— центр его вписанной окружности;
— центр окружности, касающейся стороны
и продолжений двух
других сторон треугольника
. На дуге
описанной окружности треугольника
отмечена такая точка
, что угол
вдвое меньше угла
— середина дуги
описанной окружности треугольника
. Докажите, что точки
лежат на одной прямой.
Источники:
Подсказка 1
Ух, как много всего на картинке... Можно не рисовать сразу вписанную и вневписанную окружности из условия, так как там говорилось только про их центры. И что мы знаем про центры этих окружностей? Можем ли мы найти какие-то углы?
Подсказка 2
Центры окружностей являются точками пересечения биссектрис, а тогда стоит обратить внимание на вершины треугольника, из которых исходят сразу 2 биссектрисы! Углы между ними как раз и можем определить. А что хорошего это даёт?
Подсказка 3
Ага, перед нами вписанный четырёхугольник! Тогда можно перекинуть угол BO₂D. А что там с углом BAC? Чему будет равна его половинка и как воспользоваться серединой дуги, точкой М?
Подсказка 4
Как связаны ∠BCM и ∠BAC? Тогда какой вывод можем сделать об углах ∠BCM и ∠BCD? Задача решена!
Заметим, что углы и
прямые (как углы между биссектрисами смежных углов), поэтому
лежат на одной
окружности, и
Но угол тоже равен
(поскольку опирается на половину дуги
), так что точки
лежат на одной
прямой.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!