Тема ФЕТТ (Формула Единства / Третье Тысячелетие)

Вероятности на ФЕ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела фетт (формула единства / третье тысячелетие)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#74788

Двое играют в карточную игру. У каждого есть колода из 30 карт. Каждая карта красная, зелёная или синяя. По правилам красная карта сильнее зелёной, зелёная сильнее синей, а синяя сильнее красной. Карты одного цвета равны. Колода каждого игрока перед началом партии перемешивается и кладётся перед ним рубашкой вверх. После этого оба открывают по верхней карте своей колоды. Если карты разного цвета, то выигрывает тот, чья карта сильнее. Если карты одинаковые, то они уходят в сброс, а игроки открывают ещё по одной карте - и так до тех пор, пока карты не окажутся различными. Если же обе колоды кончились, а победитель не выявлен, объявляется ничья.

Известно, что у первого игрока в колоде по 10 карт каждого цвета. Второй игрок имеет право взять любую колоду из 30 карт. Может ли он подобрать колоду так, чтобы вероятность его выигрыша была больше 1/2?

Источники: ФЕ-2022, 11.5 (см. www.formulo.org)

Показать ответ и решение

Рассмотрим колоду, в которой одна синяя карта, а все остальные красного цвета. Найдём в этом случае вероятность выигрыша второго игрока. Пусть u(r,g,b)− вероятность выигрыша, когда у первого игрока r  красных карт, g  зелёных, b  синих, а у второго одна синяя и все остальные красные (при условии r+ g+ b>0  ). Также пусть v(r,g,b)  - вероятность выигрыша, когда у второго игрока все карты красные.

Легко видеть, что

        g⋅1+ r⋅v(r− 1,g,b)
v(r,g,b)= ----r+-g+-b-----

при r+ g+b> 0  (если у первого выпала зелёная, то второй выиграл, если синяя, то проиграл, если красная, то игроки потратили по одной красной карте и продолжили игру). Ясно также, что v(0,0,0)= 0  (в этом случае будет ничья). Отсюда по индукции получаем, что v(r,g,b)= gg+b  при g+ b> 0  и v(r,0,0)= 0  .

Аналогично

u(r,g,b)= g(r+g+-b−-1)+r(1+(r+-g+-b− 1)u(r−-1,g,b))+-bv(r,g,b−-1))
                            (r+ g+ b)2

(Здесь мы рассматриваем всевозможные пары ходов: одна из r+ g+b  карт первого и одна из такого же количества карт второго. Если у первого выпала зелёная, то второй выиграет во всех случаях, кроме одного; если красная, то второй либо выкладывает синюю и побеждает, либо выкладывает красную и попадает в аналогичную игру с меньшим числом карт; если у первого синяя, то второй имеет шанс на выигрыш, только если выложит синюю и попадёт в новую игру со всеми красными). Кроме этого, u(1,0,0)=1,  u(0,1,0)= u(0,0,1)= 0  .

Легко проверить (догадаться сложнее... можно, например, угадать формулу, вручную посчитав вероятности для малых r,g,b  ), что эти равенства задают формулу

        (r⋅(g+1)    g⋅b    g⋅(g− 1))    1
u(r,g,b)=  g-+b+-1 +g-+b−-1 +--g+-b-  ⋅r+-g+b-

при g+ b>1  . Тогда

u(n,n,n)= 1 +----12--- > 1
         2  6n(4n − 1)   2

при всех n > 0  , в том числе и при n = 10  .

Ответ: да

Ошибка.
Попробуйте повторить позже

Задача 2#94762

Соревнование по бегу на непредсказуемую дистанцию проводится следующим образом. На круглой беговой дорожке случайным образом (с помощью вращающейся стрелки) выбираются две точки A  и B  , после чего спортсмены бегут из A  в B  по более короткой дуге. Зритель купил билет на стадион и хочет, чтобы спортсмены пробежали мимо его места (тогда он сможет сделать удачную фотографию). Какова вероятность, что это случится?

Источники: ФЕ - 2021, 11.5 (см. www.formulo.org)

Показать ответ и решение

Отождествим каждую точку дорожки с её расстоянием до зрителя по часовой стрелке. Тогда пары (A,B)  можно отождествить с парами чисел из [0,1)  (длину всей дорожки примем за единицу). При этом вероятность того, что (A,B)  принадлежит некоторому подмножеству [0,1)×[0,1)  , равна площади этого подмножества. Нас интересует множество таких (A,B)  , что         1
|A− B|> 2  (в этом случае кратчайшая дуга проходит через 0), это пара треугольников общей площадью 1
4  :

PIC

Ответ: 0,25

Ошибка.
Попробуйте повторить позже

Задача 3#97439

В противоположных углах шахматной доски стоят Красная и Белая Королевы. Раз в минуту они случайным образом переходят на соседнюю по стороне клетку (одна только вправо или вверх, другая только влево или вниз). Какова вероятность, что они одновременно окажутся в одной клетке (и будут стоять там вместе в течение минуты)?

Показать ответ и решение

Допустим, что королевы встретились в одной клетке. Заметим, что «расстояние в ходах королев» между противоположными углами равно 14 , поэтому встретились королевы в момент, когда каждая совершила по 7 ходов. Траектории двух королев, взятые вместе, образуют 14-звенную ломаную. Количество таких ломаных равно  7
C14  (чтобы задать ломаную, надо выбрать, какие 7 из 14 звеньев вертикальны), и это и есть количество подходящих способов движения королев. Общее же количество способов движения за 7 ходов равно  7  7   14
2 ⋅2 = 2  , и они равновероятны (каждая королева в каждый момент выбирает одно из направлений движения; оба направления возможны, поскольку они ещё не упёрлись в край доски). Значит, искомая вероятность равна   7  14      11
C14 :2 = 429 :2  .

_________________________________________________________________________________________________________________________________________________________________________________

Возможно и такое рассуждение, приводящее к другой форме ответа. Все клетки, удалённые от углов на равное число ходов (а именно на 7 ходов), лежат на диагонали доски. Для каждой клетки диагонали найдём количество ситуаций, при которых обе королевы за 7 ходов дошли до неё. Пусть k  - номер клетки на диагонали (от 0 до 7), тогда число путей для любой из королев до этой клетки равно Ck7  (из 7 ходов k  в одном направлении, остальные в другом). Столько же способов для другой королевы. Значит, всего есть (  )2
 Ck7  способов встретиться в этой клетке. Суммируя количество способов встретиться на каждой из клеток и деля на общее количество ситуаций, получаем вероятность ∑    (  )
  7k=0Ck72 :214  .

Ответ:

-429
2048

Рулетка
Вы можете получить скидку в рулетке!