Теория чисел на Межведе
Ошибка.
Попробуйте повторить позже
Рассмотрим всевозможные 100-значные натуральные числа, в десятичной записи которых встречаются только цифры 1,2. Сколько среди них делятся на 3 нацело?
Источники:
Каждое 100-значное натуральное число может быть получено дописыванием двух цифр справа к 98-значному числу. Пусть — некоторое
98-значное число. Посмотрим какие справа две цифры (каждая из которых равна 1 или 2) нужно к числу
приписать, чтобы
получившееся 100значное число делилось на 3. Воспользуемся тем, что остаток от деления натурального числа на 3 равен остатку от
деления на 3 суммы его цифр. Пусть наше число
при делении на 3 дает остаток
. Тогда
- если , то припишем 12 или 21 ;
- если , то припишем 11 ;
- если , то припишем 22 ;
Таким образом, из каждого 98-значного числа, кратного 3, можно получить два кратных трем 100 -значных числа. Каждое не кратное трем 98-значное число порождает только одно кратное трем 100-значное число.
Всего 98-значных чисел . Пусть среди них
чисел кратно трем. (Далее символом
будем обозначать количество n-значных
чисел, кратных 3.) Тогда количество кратных трем 100 -значных чисел может быть найдено по формуле
Верны, таким образом, следующие соотношения:
Сложив эти равенства (величины при этом сокращаются), получим
Остается просуммировать геометрическую прогрессию и заметить, что . Тогда
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!