Тема . Межвед (на базе ведомственных образовательных организаций)

Теория чисел на Межведе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела межвед (на базе ведомственных образовательных организаций)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68099

Обозначим

a= 3481,b= 4120,N = 26069

Известно, что остаток от деления числа b2  на N  равен a.  Найдите разложение числа N  на простые множители.

Источники: Межвед-2023, 11.7 (см. www.academy.fsb.ru)

Показать ответ и решение

Первое решение.

Заметим, что 26069= 131⋅199.  Далее проверкой до целой части от соответствующего арифметического корня проверяем оба множителя на простоту. Разложение получено.

Второе решение.

Заметим, что      2
a= 59.  Тогда

b2 ≡N 592

(b− 59)(b+ 59)≡N 0.

Следовательно, пары чисел (b− 59) и N  или (b+ 59) и N  имеют общие делители, отличные от 1. Найдём наибольший общий делитель чисел (b+59) и N  по алгоритму Евклида:

26069= 6⋅4179+ 995

4179= 4⋅995 +199

995= 5⋅199

Следовательно,НОД((b+59),N )=199  — простое число. Остаётся разделить N  на 199.

Ответ:

 131⋅199

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!