Теория чисел на Межведе
Ошибка.
Попробуйте повторить позже
Обозначим через число, полученное записью подряд всех натуральных чисел от
до
здесь
и
— натуральные числа,
причем
Так, например, число
а число
Докажите, что среди таких чисел есть число, делящееся на
Источники:
Подсказка 1
Наверное, конкретные m и n мы не предъявим, а нужно как-то построить их. Тогда полезно поискать какие-то свойства таких чисел. Подумайте, что мы можем сказать про разность a(m,1)-a(n,1)...
Подсказка 2
Из определения этих чисел следует, что это будет a(m,n+1)*10ⁿ. Тогда, если a(m,1)-a(n,1) поделится на 1011, то и a(m,n+1)*10ⁿ поделится на 1011. Найдутся ли такие m и n?
Подсказка 3
Найдутся! Действительно, если чисел a(k,1) бесконечно много, то существуют два числа a(m,1) и a(n,1) такие, что их остатки при делении на 1011 совпадают. Это значит, что a(m,n+1)*10ⁿ делится на 1011⇒a(m,n+1) делится на 1011. Осталось только придумать что-то с четностью. Когда число a(m,n+1)- четное?
Подсказка 4
Когда n- нечетное! Подумайте, сможем ли мы найти такую пару a(m,1) и a(n,1), где m и n- оба нечетные, и завершите решение!
Рассмотрим числа вида , где
— нечётное. Так как чисел указанного вида бесконечно много, то среди них найдутся два числа
и
имеющие одинаковые остатки от деления на
Тогда разность
делится нацело на
При этом
и число
является чётным. Так как
и числа
и
взаимно просты, то число
делится нацело на
а следовательно, и на
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!