Тема Межвед (на базе ведомственных образовательных организаций)

Теория чисел на Межведе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела межвед (на базе ведомственных образовательных организаций)
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#88062

На какое самое большое натуральное число будет гарантированно делиться произведение любых шести подряд идущих натуральных чисел?

Ответ обоснуйте.

Источники: Межвед - 2024, 11.1 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Давайте сначала попробуем найти верхнюю границу (число больше которого искомое точно быть не может)

Подсказка 2

Теперь осталось доказать что (n + 1)(n + 2)...(n + 6) делится на 720 для любого натурального n. Давайте вспомним сочетания из комбинаторики

Подсказка 3

Действительно,

Показать ответ и решение

Поскольку произведение первых 6 натуральных чисел равно 6!= 720,  то искомое число не больше 720.

Осталось доказать, что произведение любых подряд идущих 6 натуральных чисел n+ 1,n +2,...,n+ 6  делится на 720  . Поделим:

(n +1)(n +2)...(n+ 6)  (n +6)!   6
--------6!--------= -6!n!--= Cn+6

и получим натуральное число способов выбрать шестёрку из n+ 6  элементов. Действительно, делится.

Ответ: 720

Ошибка.
Попробуйте повторить позже

Задача 2#88063

Пусть A = 11111  . Найдите остаток от деления числа

          2024           2023
(2023⋅A − 1)  +(2024⋅A+ 1)

на число 123454321.  Ответ обоснуйте.

Источники: Межвед - 2024, 11.2 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Заметим, что А^2 = 123454321

Подсказка 2

Давайте раскроем скобки в первом слагаемом. Можем ли мы избавиться от всех слагаемых?

Подсказка 3

Да! Все кроме двух слагаемых будут содержать A^2 тогда они сравнимы с 0 по морулю A^2. Так же мы можем раскрать скобки во 2 слагаемом

Подсказка 4

Получаем исходное равно -2023A * 2024 + 1 + 2024 * A * 2023 + 1. Как ещё можно упростить это выражение?

Показать ответ и решение

Вычислим A2 :

 2      2
A  =11111 =123454321

То есть нужно найти остаток по модулю A2.  Рассмотрим первое слагаемое.

(2023⋅A − 1)2024 = (2023⋅A− 1)⋅(2023⋅A− 1)⋅...⋅(2023 ⋅A − 1)
               ◟--------------2◝0◜24--------------◞

Раскрывая скобки, как минимум два раза выберется A  из скобок, что дает 0  в сравнении по модулю A2.  Это верно, кроме случаев, когда были выбраны все единицы или когда было выбрано одно A  из всех скобок. Тогда, используя бином Ньютона, получаем, что первое слагаемое сравнимо с

(2023 ⋅A − 1)2024 ≡ −2023A ⋅2024+ 1
             A2

Аналогично получаем, что второе слагаемое сравнимо с

          2023
(2024 ⋅A + 1)   A≡2 2024⋅A ⋅2023+ 1

Тогда получаем

(2023⋅A − 1)2024+ (2024⋅A+ 1)2023 ≡2 −2023A⋅2024 +1+ 2024 ⋅A ⋅2023+ 1= 2
                            A

Следовательно, остаток равен 2.

Ответ: 2

Ошибка.
Попробуйте повторить позже

Задача 3#68094

Решите уравнение в целых числах

   x+y   x   y
12 ⋅3   = 3 + 3

Источники: Межвед-2023, 11.2 (см. www.academy.fsb.ru)

Подсказки к задаче

Подсказка 1

Пусть y неотрицательный. Давайте тогда попробуем сначала перенести одно из слагаемых с правой части влево и вынести за скобку общий множитель. Что тогда хочется ещё сделать? Что мы можем оценить из нашего предположения для y?

Подсказка 2

Верно, давайте сократим на 3^x и посмотрим на левую часть. Она целая, если y неотрицателен, и причём не делится на 3. Тогда что можно сказать о правой части и с чем возникает противоречие?

Подсказка 3

Да, правая тоже будет целым числом, но тогда она будет степенью тройки. Но такого быть не может! Отлично, то есть y не больше чем -1, а в силу симметрии x тоже. Давайте теперь вернёмся к исходному уравнению. Что, возможно, вам хотелось сразу сделать, но потом вы ни к чему не пришли? Как можно избавиться от степени тройки с одной стороны уравнения?

Подсказка 4

Точно, давайте теперь сократим на 3^(x+y). Тогда справа у нас останется сумма степеней троек, а слева число. Причём степени у нас будут положительные из-за ранее сделанных выводов. Осталось только оценить степени и победа!

Показать ответ и решение

Предположим, что y ≥ 0.  Преобразуем уравнение:

 x    y       y
3 (12⋅3 − 1)= 3

    y     y−x
12⋅3 − 1 =3

Тогда, так как y ≥ 0,  то 12⋅3y− 1 ≥11,  число целое и не кратно трем. Значит, 3y−x  тоже целое, но число 12⋅3y− 1≥ 11  не может быть степенью тройки (нулевой быть не может, так как оно больше 1,  а ненулевой - так как оно не кратно 3).  Таким образом, y ≤−1.  В силу симметрии относительно перестановки x,y  получим, что x ≤−1.  Пусть x = −m,y = −n,n,m∈ ℕ.  Тогда:

12⋅3−m−n = 3−m + 3−n

Домножим на 3m+n :

12 =3n +3m

Пусть n ≥ m.  Если m ≥ 2,  то 3n +3m ≥ 9+9 =18> 12.  Значит, m = 1,  тогда n= 2.  Получим что, n= 2,m = 1  или n= 1,m = 2.  Откуда получим ответ.

Ответ:

 (−1,−2),(−2,−1)

Ошибка.
Попробуйте повторить позже

Задача 4#68099

Обозначим

a= 3481,b= 4120,N = 26029

Известно, что остаток от деления числа b2  на N  равен a.  Найдите разложение числа N  на простые множители.

Источники: Межвед-2023, 11.7 (см. www.academy.fsb.ru)

Подсказки к задаче

Подсказка 1

Каким-то образом у нас в условии есть утверждение про квадрат, а числа у нас какие-то странные…быть может, поискать какие-то свойства у них?

Подсказка 2

Число а - квадрат! Тогда мы можем записать условие на остаток от деления на N и выполнить некоторые преобразования, чтобы понять, какие числа имеют с N общие делители.

Подсказка 3

Оказывается, (b-59)(b+59) делится на N! Тогда хотя бы одна из этих скобок имеет с N общие множители, а, значит, мы можем найти их НОД с N) Как это сделать?

Подсказка 4

По алгоритму Евклида находим НОД((b-59), N), остаётся лишь понять, а на что ещё делится N?)

Показать ответ и решение

Первое решение.

Заметим, что 26029= 131⋅199.  Далее проверкой до целой части от соответствующего арифметического корня проверяем оба множителя на простоту. Разложение получено.

Второе решение.

Заметим, что      2
a= 59.  Тогда

b2 ≡N 592

(b− 59)(b+ 59)≡N 0.

Следовательно, пары чисел (b− 59) и N  или (b+ 59) и N  имеют общие делители, отличные от 1. Найдём наибольший общий делитель чисел (b+59) и N  по алгоритму Евклида:

26069= 6⋅4179+ 995

4179= 4⋅995 +199

995= 5⋅199

Следовательно,НОД((b+59),N )=199  – простое число. Остаётся разделить N  на 199.

Ответ:

 131⋅199

Ошибка.
Попробуйте повторить позже

Задача 5#71644

Найдите количество цифр в десятичной записи числа 2100,  если известно, что десятичная запись числа 2200  содержит 61  цифру.

Источники: Межвед-2022, 11.2 (см. www.academy.fsb.ru)

Подсказки к задаче

Подсказка 1

Подумайте, каким образом мы можем оценить количество разрядов в числе через степень десятки.

Подсказка 2

Если 10^n <= a < 10^(n+1), тогда число содержит в себе n+1 разрядов. Тогда для 2^200 можно записать 10^60 <= 2^200 < 10^61. Подумайте, как с помощью этого мы можем получить аналогичное неравенство для 2^100.

Подсказка 3

Возведем 10^60 <= 2^200 < 10^61 в степень 1/2.

Показать ответ и решение

Чтобы понять сколько цифр содержится в записи натурального числа a  , надо найти такое неотрицательное целое число n,  что будет справедливым неравенство  n−1       n
10   ≤a <10 .  Такое число n,  очевидно, единственно. (Например,   2        3
10 ≤ 992<10 ,  поэтому в записи числа 992 три цифры.)

Итак, надо найти такое целое неотрицательное n,  что   n   100    n+1
10 ≤ 2  < 10  .  По условию  60   200    61
10  ≤ 2  < 10 .  Возведя обе части в степень 1
2,  получим   30  100   30+1
10  ≤ 2  < 10  2.  Значит, в десятичной записи числа  100
2  содержится 31 цифра.

Ответ: 31

Ошибка.
Попробуйте повторить позже

Задача 6#72039

Обозначим через a
 n,m  число, полученное записью подряд всех натуральных чисел от n  до m,  здесь n  и m  — натуральные числа, причем n >m ≥ 1.  Так, например, число a4,2 =432,  а число a11,7 =1110987.  Докажите, что среди таких чисел есть число, делящееся на 2022.

Источники: Межвед-2022, 11.7 (см. www.academy.fsb.ru)

Подсказки к задаче

Подсказка 1

Наверное, конкретные m и n мы не предъявим, а нужно как-то построить их. Тогда полезно поискать какие-то свойства таких чисел. Подумайте, что мы можем сказать про разность a(m,1)-a(n,1)...

Подсказка 2

Из определения этих чисел следует, что это будет a(m,n+1)*10ⁿ. Тогда, если a(m,1)-a(n,1) поделится на 1011, то и a(m,n+1)*10ⁿ поделится на 1011. Найдутся ли такие m и n?

Подсказка 3

Найдутся! Действительно, если чисел a(k,1) бесконечно много, то существуют два числа a(m,1) и a(n,1) такие, что их остатки при делении на 1011 совпадают. Это значит, что a(m,n+1)*10ⁿ делится на 1011⇒a(m,n+1) делится на 1011. Осталось только придумать что-то с четностью. Когда число a(m,n+1)- четное?

Подсказка 4

Когда n- нечетное! Подумайте, сможем ли мы найти такую пару a(m,1) и a(n,1), где m и n- оба нечетные, и завершите решение!

Показать доказательство

Рассмотрим числа вида a
 n,1  , где n  — нечётное. Так как чисел указанного вида бесконечно много, то среди них найдутся два числа a
 n,1  и ak,1,n> k,  имеющие одинаковые остатки от деления на 2022.  Тогда разность an,1− ak,1  делится нацело на 2022.  При этом                   n−k
an,1 − ak,1 =an,k+1⋅10  и число an,k+1  является чётным. Так как 2022 =2 ⋅1011  и числа 1011  и  n−k
10  взаимно просты, то число an,k+1  делится нацело на 1011,  а следовательно, и на 2022.

Ошибка.
Попробуйте повторить позже

Задача 7#72040

Решите уравнение

 2  2
x + y +1= 6xy,

где x  и y  — натуральные числа.

Источники: Межвед-2022, 11.8 (см. www.academy.fsb.ru)

Подсказки к задаче

Подсказка 1

У нас есть уравнение второй степени относительно x и y в натуральных числах. В таких случаях бывает полезно рассмотреть его как квадратное относительно одной из переменной. Что мы можем сказать про это уравнение относительно x?

Подсказка 2

Если y- натуральное число, то все коэффициенты этого уравнения целые числа. Тогда, чтобы x был целым, необходимо, чтобы четверть дискриминанта была полным квадратом. Может ли такое быть?

Подсказка 3

D/4=8y²-1. Тогда должно существовать целое t такое, что t²=8y²-1. Какие тогда ограничения, связанные с остатками, накладывается на t?

Подсказка 4

t² должен давать остаток -1 при делении на 8. Но может ли такое быть? Переберите квадраты всех остатков при делении на 8 и убедитесь, что это невозможно!

Показать ответ и решение

Пусть пара натуральных чисел (x ,y )
  0 0  удовлетворяет исходному уравнению

 2   2
x + y +1 =6xy
(1)

Тогда

1.

Положив x0 = y0 =a  и подставив в (1),  получим

2a2+ 1= 6a2

Очевидно, что a ∕∈ ℕ  . Поэтому x0 ⁄= y0  . Без ограничения общности можно считать, что в этой паре x0 >y0  . Будем это записывать как max(x,y )=x .
     0 0   0

2.

По условию, число x0  является корнем многочлена

f(x)=x2− 6y0x +y2+ 1
               0
(2)

По теореме Виета, этот многочлен еще имеет корень x2,  причем

{ x2+ x0 = 6y0
  x2x0 = y20 +1

Отсюда следует, что x2 = 6y0− x0  и x2 ∈ ℕ.  Поэтому уравнение (1)  имеет еще одно решение в натуральных числах (6y0− x0,y0)

Это означает, что для многочлена (2)  справедливы равенства

f(x0)= f(6x0 − y0)= 0

Заметим, что

f(y0)= y20 − 6y20 + y20 + 1< 0

Поэтому число y0  лежит между корнями многочлена (2),  а именно:

x0 >y0 >6y0− x0

Следовательно,

max(6y0− x0,y0)= y0 < max(x0,y0)

Итак, для любого решения (x0,y0)  существует другое решение, у которого максимальный элемент окажется меньше. Таким образом, мы можем строить новые решения, у которых максимальный элемент становится все меньше. Но при этом этот максимальный элемент, постоянно уменьшаясь, остается натуральным числом, что невозможно. Пришли к противоречию. Значит, исходное уравнение (1)  решений в натуральных числах не имеет.

Ответ: решений нет

Ошибка.
Попробуйте повторить позже

Задача 8#95852

Вычислите с точностью до одной десятой значение выражения

∘ -----∘------√-------
  86+41  86 +41 86+ ...

Источники: Межвед - 2021, 10.7 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Это выражение, как мы можем заметить, бесконечное по записи, а потому, например, кусок выражения после числа 41 равен всему выражению целиком.

Подсказка 2

Если так, то мы можем просто обозначить наше выражение за x и составить уравнение на эту величину!

Подсказка 3

Если наше выражение равно x, то x = sqrt(86 + 41x). Осталось лишь решить это несложное уравнение и показать, какой из корней нам подходит!

Показать ответ и решение

Пусть

   ∘ -----∘------√------
F =  86 +41 86+ 41 86+ ...

Тогда F  является положительным корнем уравнения

F2 =86+ 41F

Отсюда находим F = 43  .

_________________________________________________________________________________________________________________________________________________________________________________

В официальных решениях на сайте олимпиады доказывается, почему выражение для F  определено и на самом деле является действительным числом через критерий существования предела у монотонной последовательности. Но тогда корректнее было бы переформулировать условие задачи (и в идеале ещё не давать задачу 9-классникам), а при данной формулировке получается, что достаточно показать невозможность другого значения, кроме как 43.

Ответ:

 43

Ошибка.
Попробуйте повторить позже

Задача 9#46232

Решите уравнение 2x+ 2y = 24t  в целых числах.

Источники: Межвед-2020, отборочный тур, 11.4 (см. rsr-olymp.ru)

Подсказки к задаче

Подсказка 1!

Сделаем вот такой хитрый ход - вынесем 2^x за скобку! Тогда слева у нас степень двойки * неччетное число, а справа как бы разложить 24?

Подсказка 2!

В точности, это 3^t*8^3t. Попробуйте из четности установить соответствие между множителями!

Показать ответ и решение

Если x =y,  то

x+1    t
2  = 24

Если t>0,  то правая часть кратна трём, а левая — нет. Значит, t≤ 0.  Если t< 0,  то вновь придём к противоречию 3−t = 23t−(x+1)  : кратное трём число не может быть никакой степенью двойки, в том числе нулевой. Остаётся только вариант t= 0,  в котором есть решение x =− 1= y.

Рассмотрим теперь случай x⁄= y.  Не умаляя общности будем считать x <y.  Тогда можно записать y = x+v,v > 0.  Исходное уравнение запишется в виде

2x⋅(1 +2v)= 24t

Если t<0,  то в равенстве 3−t⋅(1+ 2v)= 23t−x  левая часть делится на 3,  а правая нет. Поэтому может быть только t≥ 0.  Но тогда x >0,  ведь иначе в равенстве 2x ⋅(1+ 2v)=24t  справа стоит натуральное число, а слева деление нечётного натурального числа на степень двойки (то есть в итоге получается дробь, а не натуральное число).

В итоге обе части равенства

2x⋅(1 +2v)= 24t

являются натуральными числами, поэтому по основной теореме арифметики должны быть равными степени вхождения простых множителей, откуда

          v   t
x =3t и 1+2 =3

Очевидные решения (v,t)∈ {(1,1),(3,2)} . Получаем тройки (3,4,1),(6,9,2)  , которые дают 4  решения в силу симметрии x,y  . Пусть теперь v,t> 2  , тогда 2v ≡ 0
   4  , то есть 3t− 1≡ 0
     4  . Отсюда t  чётно. Но если t  кратно двум, то t= 2k,k∈ℕ  и 3t− 1= (3k − 1)(3k+ 1)  . Если k ≥2  , то хотя бы одно из этих чисел не является степенью двойки, что невозможно. Тогда k≤ 1  ⇐⇒   t≤2  , откуда в этом случае решений нет.

Ответ:

 (−1,−1,0),(3,4,1),(4,3,1),(6,9,2),(9,6,2)

Ошибка.
Попробуйте повторить позже

Задача 10#73687

Найдите все четные натуральные числа n,  у которых число делителей (включая 1  и само n  ) равно n.
2  (Например, число 12  имеет    6  делителей: 1,2,3,4,6,12.  )

Показать ответ и решение

Все делители числа n  разбиваются на пары (d,n),d ≤ n .
   d     d  Заметим, что d≤ √n,  поскольку n = d⋅ n≥ d2.
      d  Но тогда понятно, что количество таких пар не превосходит √ -
[ n],  а количество делителей n  — не больше  √-
2[n].  В данном случае нам хватит оценки  √-
2 n.

По условию количество делителей равно n
2.  Следовательно, получим неравенство n   √ -
 2 ≤ 2 n.  Решая его в натуральных числах, получаем, что n ≤16.  Перебирая чётные n,  находим подходящие n= 8  и n= 12.

Ответ:

 8,12

Ошибка.
Попробуйте повторить позже

Задача 11#88132

Найдите все чётные натуральные числа n  , у которых число делителей (включая 1 и само n  ) равно n
2  . (Например, число 12 имеет 6 делителей: 1,2,3,4,6,12  .)

Подсказки к задаче

Подсказка 1

Подумаем, а что мы вообще знаем о количестве делителей? Быть может, можно его как-то оценить, чтобы ограничить n?

Подсказка 2

Заметим, что делители делятся на пары, в каждой из которых хотя бы одно числа не превосходит sqrt(n). Как тогда оценить количество делителей сверху?

Подсказка 3

Количество делителей н превосходит 2*sqrt(n)! Что тогда можно сказать про n?

Подсказка 4

n не превосходит 16! Осталось лишь понять, какой вид имеет число при разложении на простые и понять, какие степени простых могут в него входить ;) А чему равно количество делителей?

Подсказка 5

Количество делителей равно произведению степеней, в которых простые числа входят в n, увеличенных на единицу!

Показать ответ и решение

Если d  — делитель числа n  , то n
d  — тоже делитель числа n  . Хотя бы одно из этих двух чисел не превосходит √n.  Поэтому число делителей не превосходит  √-
2 n.

По условию число делителей равно n
2.  Следовательно, n   √-
2 ≤2 n   =⇒   n ≤16.

Разложим число n  на возможные простые множители:

    a  b c  d
n= 2 ⋅3 ⋅5 ⋅7

Из условия на количество делителей

(a+ 1)(b+1)(c+ 1)(d+ 1)= n= 2a−1⋅3b⋅5c⋅7d
                      2

следует, что при a +1≥ 5  правая часть строго больше левой:

 a−1        b      c       d
2   >a +1,3 ≥b+ 1,5 ≥c+ 1,7 ≥ d+ 1.

Поэтому и каждая из скобок в левой части меньше 5, так что 5c = 1,7d =1,  остаётся перебрать три случая в равенстве

             a−1  b
(a+ 1)(b+1)= 2   ⋅3.
  • a =1  быть не может, так как тогда левая часть чётна, а правая часть нечётна.
  • при a= 2  единственным решением 3(b+ 1)= 2⋅3b  является b= 1  =⇒  n =12.
  • при a= 3  единственным решением 4(b+ 1)= 4⋅3b  является b= 0  =⇒  n =8.
Ответ: 8 и 12

Ошибка.
Попробуйте повторить позже

Задача 12#90860

Найдите наименьшее натуральное число n  такое, что n> 2015  и

 √-----   √-----
[ 9n+ 2]⁄=[ 9n+ 4].

Здесь скобки [ ] обозначают целую часть числа. (Напомним, что целой частью числа x  называется наибольшее целое число, не превосходящее x  . Например, [3,7]=3  .)

Показать ответ и решение

Заметим, что из этого неравенства следует, что

√-----  √ -----  √-----  √ -----
[9n +2]≤  9n+ 2< [9n +4]≤  9n+ 4

Пусть t=[√9n+-4]  . Тогда 9n+ 2< t2 ≤9n+ 4  . Мы знаем, что t2  не может давать остаток 3 при делении на 9, так как тогда t2  делится на 3, но не делится на 9. Значит, t2  может быть равно только 9n+ 4  . Заметим, что t2 = 9n +4 >9 ⋅2015+ 4  и t> 134  . Число t  не равно 135 и 136 , так как t2 ≡4 (mod 9)  . Значит, n= t2−4≥ 1372−4= 2085
     9     9  и n =2085  подходит.

Ответ: 2085
Рулетка
Вы можете получить скидку в рулетке!