Остатки и делимость по модулю степеней двойки или пятёрки
Ошибка.
Попробуйте повторить позже
На столе лежат различных карточек с числами
…,
(на каждой карточке написано ровно одно число, каждое
число встречается ровно один раз). Сколькими способами можно выбрать
карточки так, чтобы сумма чисел на выбранных карточках
делилась на
Подсказка 1
Нам нужно, чтобы сумма делилась на 5, а сколько у нас чисел с различными остатками при делении на 5?
Подсказка 2
О, а их одинаковое количество! А какие случаи нам подходят? Если оба числа делятся на 5 или если одно число дает остаток a, то у второго должен быть остаток (5-a). Разбираемся со случаями по отдельности!
Данные числа, расположенные в порядке возрастания, образуют арифметическую прогрессию с разностью 3. Следовательно, остатки от
деления на 5 у этих чисел чередуются. Действительно, если какое-то из этих чисел делится на 5, то есть имеет вид , где
, то
следующее за ним число есть
— и оно даёт остаток 3 от деления на 5 — далее
, дающее остаток 1 от деления
на 5, затем —
, дающее остаток 4 от деления на 5 , затем
, дающее остаток 4 от деления на 5;
наконец, следующим является
, которое снова делится на 5, после чего порядок остатков по чисел на 5 идут в порядке
Среди данных нам 100 чисел есть по 20 чисел, дающих остатки от деления на 5.
Сумма двух чисел может делиться на 5 в следующих случаях.
1) Оба числа делятся на 5. Всего карточек с такими числами 20 , и нужно выбрать 2 из них — есть
способов.
сделать это.
2) Одно из чисел даёт остаток 1 от деления на 5 — тогда второе должно давать остаток 4 от деления на 5. Эту пару чисел можно выбрать
способами.
3) Одно из чисел даёт остаток 2 от деления на 5 — тогда второе даёт остаток 3 , и, аналогично второму случаю, получаем 400 способов выорать 2 числа. В итоге выходит 990 способов.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!