Остатки и делимость по модулю степеней двойки или пятёрки
Ошибка.
Попробуйте повторить позже
Назовём натуральное семизначное число удачным, если оно делится на произведение всех своих цифр. Существуют ли четыре последовательных удачных числа?
Предположим, что и — удачные числа. В записи этих чисел не может быть цифры 0 (на 0 делить нельзя), поэтому, эти числа отличаются только последней цифрой, следовательно, одно из них оканчивается либо на 4, либо на 8. Далее можно рассуждать по-разному.
Первый способ. Пусть — произведение первых шести цифр числа . Так как соседние числа и взаимно просты и оба делятся на , то . Следовательно, каждая из первых шести цифр числа равна 1. Но число не делится на 4, а число 1111118 не делится на 8. Противоречие.
Второй способ. Среди этих четырёх чисел есть нечётные. Поскольку они делятся на произведение своих цифр, то все их цифры нечётны. Следовательно, первые шесть цифр каждого из четырёх чисел — нечётные. Но числа, оканчивающееся на или , где — нечётная цифра, не делятся на 4. Противоречие.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!