Тема . Алгебраические текстовые задачи

Задачи с неравенствами

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебраические текстовые задачи
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63739

На заводе имеются в достаточном количестве три сплава титана, алюминия и молибдена. Все сплавы с примесями. Процентное содержание компонентов в этих сплавах приведено в таблице.

1 2 3
Молибден 8%  3%  8%
Титан 36%  21%  6%
Алюминий 55%  76%  15%

Из этих сплавов необходимо приготовить новый сплав, в котором алюминия должно быть не больше 38%  , а молибдена - не меньше   5%  . Какое наибольшее и какое наименьшее содержание титана (в процентах) может быть в этом сплаве?

Источники: ОММО-2023, номер 3 (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Давайте сначала просто посчитаем. Пусть мы взяли x,y и 1-x-y первого, второго и третьего сплавов соответственно. Тогда как выглядят наши условия на нужный сплав и что мы хотим максимизировать/минимизировать?

Подсказка 2

Вы получили условия в виде неравенства для x и y, и выражение, которое надо максимизировать/минимизировать. Может быть, на плоскости эти неравенства будут нагляднее?)

Подсказка 3

Нам по факту надо найти макс/мин выражения 6+30x+15y. Понятно, что минимум будет в точке (0, 0). А чтобы найти максимум, можно заметить, что коэф при x больше, чем коэф при y....)

Показать ответ и решение

Первое решение.

Заметим, что как бы ни изготавливали новый сплав, содержание титана в нём будет не меньше минимального из содержаний титана в имеющихся сплавах. Поэтому содержание титана в любом изготовленном сплаве будет не менее 6%  . С другой стороны, сплав 3 подходит под условия на содержание алюминия и молибдена. Значит, наименьшее содержание титана − 6%  .

Теперь найдём наибольшее содержание титана в таком сплаве. Заметим, что если при изготовлении нового сплава мы использовали сплав 2, то можно его заменить на сплав 1: от этого содержание алюминия уменьшится, а молибдена и титана - увеличится. Поэтому в сплаве с наибольшим содержанием титана не участвует сплав 2.

Сразу отметим, что тогда в таком сплаве будет 8%  молибдена, т.е. он подходит под условие на молибден. В сплаве 1 титана больше, чем в сплаве 3 , но сплав 1 не подходит под условие на алюминий. Понятно, что чем меньше мы возьмём сплава 3, тем больше будет титана в изготовленном сплаве. Возьмём ровно столько, чтобы выполнилось условие на алюминий: 55x+15y = 38(x +y)(x  и y− масса сплава 1 и 3 соответственно), откуда 17x =23y  , т.е. можно взять 23 части сплава 1 и 17 частей сплава 3. Тогда содержание титана в процентах будет

36⋅23+-6⋅17= 23,25
   23+17

Второе решение.

Пусть взято x,y  и 1− x − y  первого, второго и третьего сплава соответственно, причём x ≥0,y ≥ 0,1− x− y ≥ 0  . Тогда условия задачи можно записать так:

55x+ 76y+ 15(1− x− y)= 40x+ 61y+ 15 ≤38
    8x+ 3y+8(1− x− y) =−5y +8≥ 5

Изобразим на координатной плоскости область (см. рисунок), удовлетворяющую системе неравенств

(|{ 40x+ 61y− 23≤ 0
  −5y+ 3≥ 0
|( x≥ 0, y ≥ 0, x +y− 1≤ 0.

PIC

Процентное содержание титана 36x+ 21y+ 6(1− x− y) =6+ 30x+ 15y(∗)  . Легко видеть, что минимум этого числа достигается в точке A  и равен 6 . Чтобы найти максимум, заметим, что абсцисса точки B  равна 23  1
40 > 2  , а ордината точки    23  1
C− 61 < 2  . При этом коэффициент при x  в (∗)  больше. Значит, значение в точке B  точно больше (мы большее число умножаем на большее число), и равно       23
6+ 30⋅40 = 23,25.

Ответ:

наименьшее 6%

наибольшее 23,25%

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!