Теорема косинусов и теорема Пифагора
Ошибка.
Попробуйте повторить позже
Две окружности одинакового радиуса пересекаются в точках и . На первой окружности выбрана точка , а на второй - точка . Оказалось, что точка лежит на отрезке , a . На перпендикуляре к , проходящем через точку , выбрана точка так, что (точки и расположены по разные стороны от прямой .
а) Найдите длину отрезка .
б) Пусть дополнительно известно, что . Найдите площадь треугольника .
Источники:
Подсказка 1
Самая естественная мысль, которая возникает это найти отрезок из теоремы Пифагора. Тогда нам нужно найти два катета. Подумаем, как удобнее всего выразить сторону в треугольнике, если мы знаем радиус описанной окружности?
Подсказка 2
Верно, их можно выразить через теорему синусов. Для этого нам осталось только обозначить удобный угол и найти стороны.
Подсказка 3
Теперь попробуем ввести ещё один угол бетта, равный углу BCF, и узнать углы треугольника АDС. Что можно сказать про тангенс угла бетта, как можно выразить его через отрезки?
Подсказка 4
Ага, понимаем, что тангенсы углов BCF и DAB равны, а значит и углы эти равны. Теперь осталось выразить сторону АС треугольника АCF и найти его площадь.
а) Пусть - радиусы данных в условии окружностей, . Тогда , и по теореме синусов для :
для :
Значит,
откуда
б) Так как , то . Далее, углы и вписаны в равные окружности и опираются на одну и ту же хорду , поэтому они равны, и из прямоугольного треугольника находим, что . Тогда
поэтому
Итак,
, где Значит,
а)
б)
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!