Тема . Счётная планиметрия

Теорема косинусов и теорема Пифагора

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#49012

В остроугольном треугольнике ABC  на стороне AC  выбрана точка Q  так, что AQ :QC = 1:2.  Из точки Q  опущены перпендикуляры QM  и QK  на стороны AB  и BC  соответственно. При этом BM  :MA = 4:1,BK =KC  . Найдите MK  :AC  .

Подсказки к задаче

Подсказка 1

Сначала стоит обратить внимание на QK, ведь это и медиана, и высота в △BQC. Делаем вывод про △BQC, а дальше, конечно, надо бы ввести какие-нибудь удобные обозначения для отношений на сторонах AB и AC!

Подсказка 2

Например, положим AQ = a и AM = b. Вообще, как мы собираемся считать тогда отношение MK:AC? Кажется, что мы хотим выразить MK и AC через какую-то одну переменную, тогда она при делении сократится. Значит, надо найти связь между a и b! Что из условия ещё остаётся неиспользованным?

Подсказка 3

Конечно же, перпендикулярность QM и AB! Попробуйте использовать образовавшиеся прямоугольные треугольники, чтобы найти эту самую связь между a и b. Может, это ещё натолкнёт нас на какой-нибудь крутой факт про BQ...

Подсказка 4

Действительно, проведя расчёты, получим, что BQ ⊥ AC. Теперь снова обратим внимание на △BQC. Помимо того, что он равнобедренный, теперь мы ещё знаем, что он прямоугольный, значит, углы при гипотенузе хорошие! Только вот как это можно использовать? Поскольку сторона AC выражается через a, то мы хотим выразить MK тоже через a. Может быть, теорема косинусов? Там как раз можно будет использовать найденный хороший угол! Только надо сначала сформировать подходящий треугольник.

Подсказка 5

А именно, проведём прямую, параллельную AC, через точку M, тогда образуется треугольник, высеченный этой прямой и MK. Осталось в нём найти стороны и использовать теорему косинусов!

Показать ответ и решение

PIC

Раз QK  и медиана, и высота в треугольнике BQC  , то он равнобедренный, и значит, QC = QB  . Пусть AQ = a  и AM = b  . Тогда MB  =4b  и BQ = QC =2a  . Так как MQ ⊥ AB  , то BQ2 − AQ2 = 3a2 = BM2 − AM2 = 15b2  . Значит,    √ -
a =  5b  . Тогда AQ2 + QB2 = 5a2 = 25b2 = AB2  . Значит, QB ⊥ AC.

PIC

Проведем через M  прямую параллельную AC  . Мы знаем, что BQ =QC  и          ∘
∠BQC = 90 , поэтому                  ∘
∠MDK  = ∠ACK = 45 и       √-
BC = 2 2a  и           √-
BK = KC =  2a  . Из параллельности MD-  BM-  BD-
AC = AB  =BC  , поэтому      4     12a
MD = 5 ⋅3a= 5  ,      8√2a-
BD =  5  и      8√2a  √-   3√2a
KD  =  5 −  2a=   5  . Тогда по теореме косинусов

    2  18a2   144a2  72a2  90a2
KM   = -25--+ -25-− -25-= -25-

Тогда

      3a√--   √--
KM--= -5-10 = -10
 AC     3a     5
Ответ:

 √10-:5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!