Тема . Счётная планиметрия

Теорема косинусов и теорема Пифагора

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#98164

Меньшая сторона параллелограмма и меньшая его диагональ, соответственно равные 4  и 2+√37,  образуют угол в 60∘.  Найдите радиус описанной окружности около четырёхугольника, образованного пересечениями биссектрис внешних углов заданного параллелограмма.

Источники: Газпром - 2024, 11.3 (см. olympiad.gazprom.ru)

Показать ответ и решение

Пусть ABCD  — заданный параллелограмм. Тогда AB = 4,  BD = 2+√37,∠ABD  =60∘.

PIC

По теореме косинусов в △ABD  :

AD2 =AB2 + BD2 − 2⋅AB ⋅BD ⋅cos∠ABD

  2   2     √-- 2         √--      ∘
AD = 4 + (2+  37) − 2 ⋅4 ⋅(2+ 37)⋅cos60

AD2 = 16 +4+ 4√37+ 37− 2 ⋅4 ⋅(2+ √37)⋅ 1
                                  2

  2       √--     √ --   2
AD  =57+ 4 37− 8− 4 37,AD  = 49

AD =7

Пусть биссектрисы внешних углов при вершинах A  и B  параллелограмма ABCD  пересекаются в точке M,  биссектрисы внешних углов при вершинах B  и C  — в точке N,  углов при вершинах C  и D  — в точке P,  а углов при вершинах D  и A  — в точке Q.  Четырехугольник, образованный биссектрисами внешних углов параллелограмма, есть MNP Q.

Биссектрисы односторонних углов при параллельных прямых и секущей пересекаются под прямым углом, а значит, MNP  Q  — прямоугольник (∠M = ∠N =∠P = ∠Q =90∘).

Пусть биссектриса внешнего угла B  пересекает продолжение стороны AD  в точке L.  Рассмотрим △LBA  — равнобедренный (так как BM  — биссектриса и накрест лежащие углы при параллельных прямых AD  и BC  и секущей BL  равны), то LA =AB = 4  и биссектриса AM  является и медианой, то есть M  — середина BL.

Аналогично, в равнобедренном △CDF  :CD = DF =4  и P  — середина CF.  Рассмотрим трапецию LBCF  (AD ∥BC ),  в которой MP является средней линией, а значит, она параллельна основаниям и равна:

MP = 1(LF + BC) = 1(LA +AD + DF + BC)= 1(2AB +2BC )=AB + BC
     2           2                   2

По заданным числовым значениям задачи получаем: MP = AB +BC = 4+ 7= 11.  Итак, MNP Q  — прямоугольник, где диагонали MP  =QN  =11  и радиус описанной около прямоугольника окружности равен R = OM = 11= 5,5.
          2

Ответ: 5,5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!