Введение векторов или координат в планиметрии
Ошибка.
Попробуйте повторить позже
В треугольнике длины сторон равны
,
и
. Найдите площадь фигуры, состоящей из тех и только тех точек
внутри
треугольника
, для которых выполняется условие
Первое решение. Обозначим .
Докажем утверждение, известное как теорема Лейбница в геометрии. Пусть - точка пересечения медиан треугольника
.
Представим
тогда
Поскольку центр тяжести треугольника
, то
и
С учётом доказанной выше теоремы задача эквивалентна
то есть неравенство сводится к
Итак, геометрическим местом точек , удовлетворяющих поставленному условию, является круг радиуса
с
центром в точке пересечения медиан треугольника
.
Этот круг принадлежит треугольнику, если его радиус не больше, чем одна треть наименьшей из высот :
Значит, при выполнении условия
искомая площадь равна . По формуле Герона найдем площадь треугольника:
Вычислим
Поскольку , условие
выполняется:
Значит, ответ: .
Второе решение. Высота треугольника, проведенная к стороне длины , равна
. Основание высоты делит эту сторону на отрезки,
равные
и
. Введем систему координат так, как показано на рисунке. Тогда
.
Перепишем неравенство
так:
Оно определяет круг радиуса с центром в точке
. Покажем, что все точки этого круга принадлежат треугольнику
. Для этого найдем расстояния от точки
до сторон треугольника. Уравнение стороны
, расстояние до неё
равно
. Уравнение стороны
, расстояние
. И
расстояние от точки
до стороны
равно, очевидно,
. Наименышее из расстояний
, тем не менее, больше,
чем радиус круга
. Поэтому весь круг и является той фигурой, площадь которой требуется найти, откуда
.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!