Тема . Векторы и координаты в планиметрии

Введение векторов или координат в планиметрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела векторы и координаты в планиметрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#43116

Вершины K,L,M,N  четырехугольника KLMN  лежат соответственно на сторонах AB,BC,CD, DA  квадрата ABCD.  Найти наименьший возможный периметр четырехугольника KLMN,  если AK = 2  см, BK  =4  см и AN  =ND.

Источники: ОММО-2010, номер 7, (см. olympiads.mccme.ru)

Показать ответ и решение

Первое решение.

PIC

(везде ниже единицы измерения — сантиметры)

Из первого условия AB =6  =⇒   AN = ND = 3.  Сведём задачу к неравенству ломаной. Для этого отразим квадрат относительно CD  (A → A′,B → B′),  а затем относительно BC ′ (D → D ′,A′ → A′′,M → M ′).  Легко видеть, что LM = LM ′.  Далее отразим N  относительно C  в точку N′ ∈ D′A ′′.  Можно считать, что точку M  мы ранее также отражали относительно C,  потому M ′N ′ =MN.  По неравенству ломаной KN ′ ≤ KL+ LM ′+M ′N′ = PKLMN − NK.  Отрезок NK  =√32-+22 = √13  фиксирован, потому достаточно посчитать длину KN ′ (нетрудно видеть, что минимум достигается подбором точек L  и M ).  Используем теорему Пифагора xKN ′ =6 +3= 9  (“проекция на Ox  ”) и yKN′ = 4+ 6= 10,  откуда KN ′ = √181.

Второе решение.

Введём систему координат с центром в точке A,  ось Ox  направим вдоль AD,  ось Oy  вдоль AB,  возьмём за единицу измерения    1  см. Обозначим координату точки L  по оси x  за a,  координату точки M  по оси y  — за b.  Тогда по теореме Пифагора периметр четырёхугольника KLMN  равен

∘a2+-42+ ∘(6−-a)2+-(6− b)2+∘32-+-y2+∘32-+-22

Отметим точки с соответствующими им координатами: R (a;4),P(6;10− b);Q(9;10).  По неравенству ломаной

                  ∘-2----2
AR+ RP +P Q≥ AQ =  9 + 10

причём равенство достигается при x4 = 106−b = 190 =⇒   a= 158 ,b= 103 .

Итак, минимальный периметр равен √92-+102+ √32+-22.

Ответ:

 √13-+√181  см

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!