Тема . Векторы и координаты в планиметрии

Введение векторов или координат в планиметрии

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела векторы и координаты в планиметрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92175

Существует ли такой выпуклый четырёхугольник, у которого длины всех сторон и диагоналей в некотором порядке образуют геометрическую прогрессию?

Источники: ММО - 2021, второй день, 11.4 (см. mmo.mccme.ru)

Показать ответ и решение

Пусть a  — некоторое положительное число. Треугольник со сторонами 1,a  и a2  существует тогда и только тогда, когда выполняются три неравенства:

      2         2   2
1< a+ a,  a< 1+a , a < a+ 1.

Первое из этих неравенств выполнено при a > 1
    φ  , второе — при всех положительных a  , третье — при a< φ  , где φ= 1+√5
    2  — так называемое «золотое сечение», положительный корень квадратного уравнения x2 − x− 1= 0  . Следовательно, треугольник с такими сторонами существует при a∈( 1;φ )
    φ . При таких же a  существует треугольник со сторонами 1, 1
  a  и 1-
a2  . Пусть далее значение a  принадлежит отрезку   √--  (1  )
[1; φ]⊂  φ;φ .

В декартовой системе координат Oxy  отметим точки O(0,0)  , B (1,0)  , точку A  в полуплоскости y > 0  , для которой       2
OA = a  и AB = a  , а также точку C  в полуплоскости y < 0  , для которой       1
OC = a2  и      1
CB = a :

PIC

По доказанному выше такие точки существуют для всех a ∈[1;√ φ]  . Кроме того, треугольники OAB  и OBC  подобны по трем пропорциональным сторонам. Значит, ∠AOB = ∠BOC  и ∠OAB = ∠OBC  . Поскольку 1≤ a≤ a2  , угол AOB  , лежащий напротив стороны а треугольника OAB  , меньше 90∘ . Отсюда получаем, что

                  ∘
∠AOC  =2∠AOB  <180

∠ABC  =∠ABO  +∠OBC  =∠ABO  +∠OAB  <180∘

Следовательно, OABC  — выпуклый четырехугольник при всех указанных значениях a  .

Пусть точка A  имеет координаты (x;y)  , тогда x2+y2 =  = a4  и (x− 1)2+ y2 = a2  . Из этих уравнений получаем

    4   2
x= a-−-a-+-1= f(a)
       2

     --------
y =∘ a4− f2(a)

Эти выражения непрерывно зависят от a  на отрезке [1;√ φ]  . Аналогично доказывается, что координаты точки C  также непрерывно зависят от a  на этом отрезке. Следовательно, длина диагонали AC  четырехугольника OABC  , равная g(a)  , также непрерывно зависит от a  на этом отрезке.

При a= 1  треугольники OAB  и OBC  являются равносторонними со стороной 1 , поэтому g(1)= √3  . При a= √φ-  получаем

 √ --               √ -- -1-  1+-φ   √--3
g( φ)=AC < AB + BC =  φ+ √φ-=  √φ-= ( φ) .

Значит, непрерывная на отрезке   √ --
[1;  φ]  функция g(a)− a3  принимает в концах этого отрезка значения разных знаков:

         √-
g(1)− 13 = 3− 1> 0

g(√φ)− (√φ)3 < 0

Поэтому найдется такое значение      √ --
a ∈(1; φ)  , при котором g(a)− a3 = 0  и, следовательно,

OC = -12,CB = 1,OB =1,AB = a,OA = a2,AC = a3
     a       a
Ответ: да

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!