Тема . Неравенства без логарифмов и тригонометрии

Сравнение чисел

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79623

Найдите какие-нибудь целые числа A  и B  , для которых выполняется неравенство:

          √-
0,999< A+ B 2 <1

Источники: Межвед-2019, 11.4 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Обратите внимание, что для целых x и y выражение вида (x + y√2)ⁿ для всех n будет принимать тот же вид, то есть (x + y√2)ⁿ = x₁ + y₁√2, где x₁ и y₁ тоже целые числа.

Подсказка 2

Если найти такие целые x и y, что (x + y√2)ⁿ будет больше нуля, но меньше 0.001 при каком-то n, то 1 - (x + y√2)ⁿ будет в нужном нам по условию диапазоне. Какие x и y могут подойти для этого?

Подсказка 3

При x = -1 и y = 1 мы сможем получить число в промежутке от 0 до 0.001, так как √2 – 1 < 1/2. Тогда какой степени n точно будет достаточно, чтобы (√2 - 1)ⁿ было меньше 0,001?

Подсказка 4

√2 – 1 < 1/2, значит, (√2 - 1)¹⁰ < (1/2)¹⁰ < 1/1024 < 1/1000. Остается найти (√2 - 1)¹⁰ и вычесть данное число из единицы!

Показать ответ и решение

Первое решение.

Мы знаем, что            √-
1.414213562<  2< 1.414213563  . Давайте посчитаем приближения   √-
x⋅ 2  для маленьких x  и найдем какое-то число, которое будет близко к целому. Получим, что            √-
7.07106781< 5 2< 7.071067815  . Теперь давайте посмотрим на   √-
(5 2− 7)y  и найдем такое y  , чтобы это число было близко к 1. Получим              √-
0.99494934< 14(5 2 − 7)< 0.99494941  . Повторим эту операцию еще раз уже для                  √-            √ -
0.00505059< (1− 14(5 2− 7))t= (99− 70 2)t< 0.00505066t  . Тогда при t= 198  мы получаем             √-
1 <198(99− 70 2)< 1.00003068  . Значит,                  √ -
0.999< 2− 198(99− 70  2)< 1

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение.

Заметим, что       √-  2B2−A2
A+ B ⋅ 2= B√2−A-  . Давайте найдем такие положительные x  и y  , что  2    2
|x  − 2y |=1  и     √-
x+ y 2> 1000  . Их можно таким способом. Начнем с x =y =1  . Для этой пары выполняется первое условие, но не выполняется второе. Заменим (x  , y  ) на (x+2y  и x+ y  ). Тогда |(x+ 2y)2− 2(x +y)2|=|− x2− 2y2|=1  и первое условие остается выполненным, а     √-
x+ y 2  увеличивается хотя бы на 1. Значит, такими операциями мы когда-то дойдем до нужных x,y  .

(1,1)→ (3,2)→ (7,5)→ (17,12)→ (41,29)→ (99,70)→ (239,169)→  (577,408)

Значит, при x= 577  и y = 408  мы знаем, что  2   2
x − 2y  =1  (так как знак постоянно меняется) и     √-
x+ y 2> 1000  . Значит,

    1       x2− 2y2        √-      x2 − 2y2
1− 1000 < 1− x+-y√2-=1 − (x− 2y)=1 −-x+y√2-< 1
Ответ:

 A = −3362, B = 2378

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!