Тема . Неравенства без логарифмов и тригонометрии

Сравнение чисел

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела неравенства без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92993

Сравните числа 100-⋅ 102-⋅...⋅ 1020-⋅ 1022-
101  103     1021  1023  и 5.
16

Источники: ПВГ - 2022

Подсказки к задаче

Подсказка 1

Попробуем как-то телескопировать произведение в левой части неравенства. Для этого умножим его на число B = 101/102 × 103/104 × ... × 1023/1024. Пусть левая часть неравенства равна A. Можно ли сравнить A и B?

Подсказка 2

Конечно, n/(n+1) < (n+1)/(n+2), поэтому A < B! Теперь, зная число AB, можно ли доказать неравенство?

Показать доказательство

Заметим, что -n-< n+1.
n+1  n+2  Поэтому

    100  102      1020- 1022
A = 101 × 103 × ...× 1021 × 1023 <

  101  103      1021   1023
< 102 × 104 × ...× 1022-× 1024-=B

Перемножив и сократив дроби, получим                  (  )
A ×B = 1100204 =22556 = 5162.  С другой стороны, поскольку A <B,  то            ( )
A2 < A× B = 516-2.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!