Тема . Математический анализ

.10 Множества и операции с ними. Функции. Мощности множеств. Множества на вещественной прямой. Вещественные числа.

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела математический анализ
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#136932

Доказать, что множество всех натуральных чисел, кратных 100 - счетно.

Показать доказательство

Множество, о котором идет речь - это множество

A = {100,200,300,400,...}

Чтобы установить, что оно счетно, придумаем биекцию

f : ℕ → A

Её придумать очень легко:

f (n ) = 100n

Ясно, что это инъекция (если n ⁄= m  , то 100n ⁄= 100m  ), и ясно, что это сюръекция, потому что любое число, кратное 100, будет получено в результате применения f  к какому-то натуральному числу. Таким образом, A  счетно по определению.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!