Тема . Счётная планиметрия

Счёт площадей, рельсы Евклида, теорема о линолеуме

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#106840

На сторонах BC  и DC  параллелограмма ABCD  выбраны точки D
  1  и B
  1  так, что BD  =DB  .
  1     1  Отрезки BB
   1  и DD
   1  пересекаются в точке Q.  Докажите, что AQ  — биссектриса угла BAD.

Показать доказательство

Первое решение. Пусть P  — точка пересечения прямых AB  и DD .
  1  Тогда утверждение задачи равносильно следующему равенству:

PQ   AP
QD-= AD-

Пусть AB =CD = a,  AD = BC =b,  BD1 = DB1 =c  и BP = x.  Тогда из подобия треугольников BP D1  и APD  следует

-x--= c
x+ a  b

откуда

x= -a2- и  PD = x+a = -a2--
   b− c               b− c

PIC

Далее, из подобия треугольников BP Q  и B1DQ  следует

P-Q   PB--  x
QD  = DB1 = c

Утверждение задачи следует из равенства

PQ   x    a   ( ab )     AP
QD-= c = b−-c = b− c :b= AD-

______________________________________________________________________________________________________________________________________________________

Второе решение. Ясно, что

SBQD = SBDD1 − SBQD1 = 1d1 ⋅D1B
                      2

где d1  — расстояние от точки Q  до прямой AD.  Аналогично

S    = 1d ⋅DB
 BQD   2 2    1

где d
 2  — расстояние от точки Q  до прямой AB.  Поэтому из равенства BD  =DB
  1     1  следует, что d = d.
 1   2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!