Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#43960

Основание треугольной пирамиды ABCD  — правильный треугольник ABC.  Объём пирамиды равен 2√5
 3  , а её высота, проведённая из вершины D  , равна 3.  Точка M  — середина ребра CD.  Известно, что радиусы сфер, вписанных в пирамиды ABCM  и ABDM  , равны между собой.

(a) Найдите возможные значения угла между гранями пирамиды при ребре AB.

(b) Найдите все возможные значения длины ребра CD  , если дополнительно известно, что грани BCD  и ABC  взаимно перпендикулярны.

Источники: Физтех-2017, 11.7 (см. olymp.mipt.ru)

Подсказки к задаче

Пункт а), подсказка 1

Как можно применить данные о равенстве радиусов сфер, вписанных в пирамиды? В условиях, когда известен объём, хочется подумать о формуле, связывающей радиус с объёмом и площадью поверхности. (Если такая вам неизвестна, попробуйте её вывести по аналогии с планиметрическим S = p*r)

Пункт а), подсказка 2

Итак, что мы видим: одна грань у этих пирамид общая, две другие попарно равновелики, так как М является серединой CD. Что в этом случае можно сказать об оставшейся паре граней?

Пункт а), подсказка 3

У нас появились равные по площади грани! Известный объём пирамиды и высота к одной из них помогут нам отыскать площади этих граней. Нетрудные вычисления откроют нам ещё и длину высоты грани ADB.

Пункт а), подсказка 4

Проведите высоту к основанию АВС Данной пирамиды и её апофему в грани ADB. Какая теорема поможет нам достроить имеющуюся конструкцию до линейного угла двугранного угла? Мы знаем достаточно, чтобы найти триг. функцию от искомого угла! Не забывайте только — нам никто не говорил что искомый уголочек будет острым ;)

Пункт б), подсказка 1

Какой вывод о расположении высоты пирамиды мы можем сделать из перпендикулярности двух её граней?

Пункт б), подсказка 3

Осталось снова применить теорему Пифагора и искомое ребро у нас в кармане :) Только будьте внимательны: совсем не обязательно высота нашей пирамиды будет падать именно на ребро, а не на его продолжение!

Показать ответ и решение

Воспользуемся формулой радиуса вписанной сферы r= 3V
   S  , где V  — объём, а S  — площадь поверхности пирамиды. Объёмы пирамид ABCN  и ABDM  равны (грань ABM  общая, а вершины C  и D  равноудалены от плоскости ABM  ); кроме того SADM = SACM  и SBDM  =SBCM  (медиана делит площадь треугольника пополам). Значит, равенство сфер, вписанных в пирамиды ABCN  и ABDM  , эквивалентно условию SABD = SABC  или равенству высот, проведённых к стороне AB  в треугольниках ABD  и ABC  .

PIC

Пусть DH  высота пирамиды, а DK  высота в треугольнике ABC  . Объём пирамиды равен √253-  , а её высота из вершины D  равна 3, то есть DH  . Значит, площадь основания пирамиды равна 2√53  . Тогда сторона основания AB = 1√03  , а высота треугольника ABC  равна 5. Значит, DK  также равно 5. Из прямоугольного треугольника DHK  находим KH = √KH2-−-DH2-= 4  , т.е. точка H  находится на расстоянии 4 от прямой AB  (H  лежит на одной из двух прямых, параллельных AB  , на расстоянии 4 от неё). Тем самым, угол между гранями при ребре AB  равен arccos± 4
      5  .

PIC

Из условия, что грани BCD  и ABC  взаимно перпендикулярны, следует, что H  лежит на BC  . Так как KH = 4  , то       8
HB = √3  . Значит CH = CB ±HB  = 2√3  или 1√83  . Тогда       ---------- ∘ --
CD = √CH2 +HD2  =  331  или   --
3√ 13  .

Ответ:

 (a) arccos±4
         5

  √3√1
(b)  3  или  √--
3 13

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!