Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63890

Дана правильная треугольная пирамида. Известно, что центр сферы, описанной около этой пирамиды, равноудалён от боковых рёбер и от плоскости основания пирамиды. Найдите радиус сферы, вписанной в эту пирамиду, если длина ребра её основания равна 12.

Подсказки к задаче

Подсказка 1

Назовём нашу пирамиду SABC, где △ABC будет основанием. Попытаемся узнать длину бокового ребра, пользуясь данными о том, что центр описанной около этой пирамиды сферы равноудалён от боковых рёбер и плоскости основания. Где относительно высоты пирамиды будет расположен центр описанной сферы? Пусть Н — основание высоты, а О₁ — центр описанной сферы. Что можно сказать про △ASH, пользуясь тем, что точка О равноудалена от точки Н и прямой AS, а также от точек S и A?

Подсказка 2

Пирамида правильная, значит мы точно знаем положение точки Н, длину АН и отсюда сможем вытащить AS. Теперь мы знаем длины всех рёбер пирамиды! Подумайте, как можно вытащить радиус вписанной сферы?

Подсказка 3

Центр вписанной сферы О₂ также лежит на высоте пирамиды. Нетрудно доказать, что если М — середина АВ, то именно в плоскости (MSH) будут лежать радиусы, проведённые в точки касания сферы с гранями АВС и SAB. Рассмотрите △MSH, как мы можем в нём посчитать O₂H?

Подсказка 4

MH нетрудно ищется из свойств правильного треугольника. Пифагор поможет нам найти SM и SH. О₂, как точка равноудалённая от сторон МН и MS лежит на биссектрисе угла M. Осталось только применить свойство биссектрисы и задача решена!

Показать ответ и решение

Пусть ABC  — основание пирамиды, S  — вершина, H  — центр треугольника ABC,  M  — середина AB,O
     1  — центр описанной сферы, O2  — центр вписанной сферы. Поскольку точка O1  равноудалена от AS  и ABC,AO1  — биссектриса треугольника ASH.  Стало быть,                          ∘
∠HAO1 = ∠SAO1 = ∠ASO1 =30 .

PIC

Поскольку AB = 12,  имеем       √-
AH = 4 3,  откуда O1H =4,  O1A = O1S = 8.  Для треугольника MSH  имеем              √-
SH =12,MH = 2 3,  откуда       √--
SM = 2 39.  Поскольку MO2  — биссектриса,                       √--
SO2 = HO2 ⋅SM∕MH =HO2  13.  Стало быть,        √ --
HO2 (1 +  13)=  SH = 12,  откуда       √--
HO2 =  13− 1.

Ответ:

 √13-− 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!