Тема . Счёт отрезков в стерео

Теорема косинусов, теорема Пифагора, использование теоремы о трёх перпендикулярах

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счёт отрезков в стерео
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#37114

Две смежные боковые грани пирамиды, в основании которой лежит квадрат, перпендикулярны плоскости основания. Двугранный угол между двумя другими боковыми гранями равен 2π
3  . Найдите отношение высоты пирамиды к стороне основания.

Источники: ПВГ-2019, 11.3 (см. rsr-olymp.ru)

Показать ответ и решение

PIC

Пусть это пирамида ABCDS  , где SD ⊥ ABCD  (то есть основанию перпендикулярны ASD  и CSD  ). Обозначим сторону квадрата из основания за a  .

В силу симметрии высоты AH  и CH  к BS  пересекаются в одной точке. Тогда из условия ∠AHC  =120∘ , как угол между высотами к общей прямой двух плоскостей. Далее в силу той же симметрии AH =HC  и AO = OC  , то есть AC ⊥ OH  и ∠HCA = ∠HAC = 30∘ . Отсюда OH = OC tg30∘ = √a2 ⋅ 1√3 = √a6  . Далее заметим, что SB ⊥ ACH  , поскольку перпендикулярна двум прямым AH  и CH  , откуда OH ⊥ BS  . Тогда △BHO  ∼ △BDS  . Тогда ODHS-= BBHD-  . Осталось найти

                  ∘----------------
     ∘ --2-----2    2  (-a- --1--)2  ∘ -2--2-2  -a-
BH =   BC − CH  =  a −  √2-⋅cos30∘   =  a − 3a = √3  =⇒

              a  √-
DS = OH-⋅BD- = √6 ⋅-2a-=a
      BH        a√3

То есть высота пирамиды равна стороне основания.

Ответ:

 1 :1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!