Теорема косинусов, теорема Пифагора, использование теоремы о трёх перпендикулярах
Ошибка.
Попробуйте повторить позже
Объём правильной треугольной пирамиды равен одной шестой куба бокового ребра. Найдите плоский угол при вершине.
Подсказка 1
Наверное, вся сложность этой задачи состоит в том, как искать плоский угол. Может попробовать найти его половинку, ведь для этого всего-то надо найти отношение бокового ребра к ребру основания...
Подсказка 2
Пускай ребро основания равно a, боковое ребро- x. Попробуйте расписать объём пирамиды через a и x, тогда мы найдем связь между ними (не забудьте, что по условию объем также равен x³/6)
Подсказка 3
Приравняв объем, выраженный через a и x, к x³/6, можно поделить обе части на a³ и сделать замену t=x/a. Осталось только решить иррациональное уравнение...
Подсказка 4
Можно возвести обе части в квадрат и сделать замену s=t². Подберите корень в кубическом уравнении (подставьте например 1 или -1...) и доведите решение до конца!
Первое решение.
Так как
то
|
Решая данную систему, получаем:
________________________________________________________________________________________
Второе решение. Пусть ребро основания равно , а боковое — .
Тогда объём пирамиды можно посчитать по формуле (высоту легко найти из теоремы Пифагора)
Мы составили уравнение, остаётся понять, что искать. Оказывается, нам достаточно найти , проще говоря, достаточно найти значение . Зная это, преобразуем уравнение, сделав замену (для этого поделим обе части на )
После замены получаем
Сразу несложно увидеть решение Вынося его, получим
Получаем или откуда Подойдёт только , откуда , значит, .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!