Тема . Счёт отрезков в стерео

Теорема косинусов, теорема Пифагора, использование теоремы о трёх перпендикулярах

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счёт отрезков в стерео
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74785

В прямоугольном параллелепипеде ABCDA ′B′C′D ′ отметили середину O  медианы AM  треугольника AB ′D ′ . Оказалось, что эта точка удалена от прямых    ′  ′
AB ,AD и от грани ABCD  на расстояние 1 . Найдите объём параллелепипеда.

Источники: ФЕ-2022, 11.2 (см. www.formulo.org)

Подсказки к задаче

Подсказка 1

Давайте для начала попробуем изучить картинку. Наша точка O равноудалена от прямых AD' и AB', следовательно она лежит на биссектрисе угла ∠D'AB'. Но по условию, O- середина медианы. Что мы тогда можем сказать про треугольник △D'AB'?

Подсказка 2

Верно, он равнобедренный! Тогда AD'=AB'. Значит и прямоугольные треугольники △AA'B' и △AA'D' равны по катету и гипотенузе. Нетрудно видеть, что расстояние от M до плоскости (ABCD) равно удвоенному расстоянию от O до этой же плоскости, т.е. 2. Давайте обозначим длину AB за x и попробуем выразить через нее остальные отрезки...

Подсказка 3

AB' и B'D' можно легко найти из теорем Пифагора. Тогда в треугольнике △D'AB' мы знаем все стороны ⇒ можем воспользоваться формулой для нахождения медианы AM. А что можно сказать про треугольники △AOX и △AB'M?

Подсказка 4

Точно, они подобны! Тогда B'M*AO/AB' = OX = 1, где X- основание перпендикуляра из O на AB'. Мы уже умеем выражать B'M, AO и AB' через x, поэтому мы сможем решить уравнение и найти x. Сделайте это и завершите решение!

Показать ответ и решение

PIC

Пусть X  и Y  - это основания перпендикуляров, опущенных из O  на AB′ и AD′ . Точка O  на медиане AM  равноудалена от сторон треугольника AB ′D ′ , поэтому она лежит также на биссектрисе; значит, медиана является биссектрисой, поэтому AB ′ =AD ′.

△ADD ′ = △ABB ′ по катету и гипотенузе, тогда AB =AD.  Обозначим длины отрезков AB = AD  и AA ′ через x  и z  . Тогда

                             √ ---     √-------
AB′ = AD′ = ∘x2-+z2,B′M =D ′M =--2x2,AO = -2x2+-4z2-
                               2           4

. Taкжe

            ′                                ∘ -2-2----2-
OX  =OY = B-MAB⋅A′O-(из подобия △AOX и △AB ′M )= 14 x-(xx2++2z2z-)

Расстояние от точки O  до основания ABCD  в 2 раза меньше, чем расстояние от M  до основания ABCD,  то есть OX = z2 = 1  , откуда легко получается z =2  и

x2(x2+ 8)= 16(x2+ 4)

то есть      ------
x =∘ 4+ 4√5  . Объём равен x2z = 8+8√5  .

Ответ:

 8+ 8√5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!