Теорема косинусов, теорема Пифагора, использование теоремы о трёх перпендикулярах
Ошибка.
Попробуйте повторить позже
Точка лежит на ребре куба В квадрат вписан прямоугольник так, что одной из его вершин является точка а три другие расположены на различных сторонах квадрата основания. Прямоугольник является ортогональной проекцией прямоугольника на плоскость верхнего основания Диагонали четырехугольника перпендикулярны. Найти отношение
Источники:
Подсказка 1
Давайте ещё рассмотрим четырёхугольник MK₁L₁N. Что мы можем сказать о параллельности его сторон, углах; в целом, какого рода этот четырёхугольник?
Подсказка 2
Так как его стороны MN и L₁K₁ равны и параллельны, то MK₁L₁N — параллелограмм. Также рассмотрим его углы, воспользовавшись теоремой о трёх перпендикулярах. И о чём в таком случае говорит перпендикулярность диагоналей?..
Подсказка 3
Правильно, MK₁L₁N — квадрат. Обозначим сторону куба за а. Тогда можно выразить из AB отрезки AM и MB (пусть один из отрезков равен λa, где λ - некоторая неизвестная). Теперь, чтобы найти отношение АМ:МВ, нам достаточно просто найти λ.
Подсказка 4
MK₁ и MN равны как стороны квадрата MK₁L₁N и к тому же легко выражаются через длины АМ и МВ с помощью нескольких теорем Пифагора. Осталось только верно выразить эти стороны через λ и а и приравнять, сократив а. И не забудьте, что главный вопрос задачи — найти отношение, а не λ!
и , поэтому четырехугольник — параллелограмм. По теореме о трёх перпендикулярах угол прямой, поэтому — прямоугольник. Его диагонали по условию перпендикулярны, поэтому — квадрат.
Пусть — ребро куба, с неизвестным
Тогда и по теореме Пифагора
Стороны и равны, поэтому
В итоге
так что
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!