Тема . Счёт площадей и объёмов

Пирамиды и призмы с общим основанием

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счёт площадей и объёмов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#51629

На ребре CC
   1  правильной треугольной призмы ABCA  B C
     1 1 1  выбрана точка M  так, что центр сферы, описанной около пирамиды MAA1B1B,  лежит в грани AA1B1B.  Известно, что радиус сферы, описанной около пирамиды MABC,  равен 5,  а ребро основания призмы равно  √-
4 3  . Найдите:

(a) отношение объёма пирамиды MAA1B1B  к объёму призмы

(b) длину отрезка MC

(c) площадь полной поверхности призмы

Источники: Физтех-2012, 11.6 (см. olymp.mipt.ru)

Показать ответ и решение

PIC

Введём обозначения: K  — центр грани ABC; L− середина ребра AB; Q  — центр сферы, описанной около пирамиды MAA1B1B  (т.е. Q  — центр грани AA1B1B  ); O  — центр сферы, описанной около пирамиды MABC  .

(a) -VMABC---= 1 ⋅ MC-;-VMA1B1C1-= 1⋅ MC1-⇒ VMABC+VMA1B1C1 = 1⋅ MC+MC1 = 1,
VABCA1B1C1  3  CC1  VABCA1B1C1   3 CC1      VABCA1B1C1     3   CC1     3  3начит, объём пирамиды MAA1B1B  составляет две трети объёма призмы.

(b) Сторона равностороннего треугольника ABC  равна  √-
4 3  , следовательно,       √-  1√-
CK  =4 3 ⋅ 3 = 4  , как радиус описанной окружности.

Рассмотрим прямоугольную трапецию CKOM  . В ней известны стороны CK  =4,OM = 5  и диагональ OC = 5.  По теореме Пифагора из треугольника OCK  находим, что OK = 3.  Опустим из точки O  перпендикуляр OH  на отрезок MC  . Тогда MC  =2 ⋅CH  =2⋅KO = 6.

(c) Обозначим BB1 =h.  Тогда

           ∘ ------                        ∘-----------
    h        h2         ∘ --2-----------2   ( h   )2
QL = 2,QB =   4 + 12,QM  =  CL + (QL− MC ) =    2 − 6 + 36

Отрезки QB  и QM  равны как радиусы сферы. Решая получающееся уравнение, находим, что h = 10.  Тогда площадь поверхности призмы       √-   √-         √-    √ -
S = 2⋅43⋅(4 3)2 +3⋅10⋅4 3= 144 3.

Ответ:

(a) 2:3

(b) 6

(c) 144√3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!