Тема . Счёт площадей и объёмов

Ортогональные проекции

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счёт площадей и объёмов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63899

В правильном тетраэдре ABCD  проведено сечение так, что оно проходит через точки K,L,M  , лежащие на ребрах DC,DB, DA  соответственно. При этом DK :KC = 1:3,DL :LB = 2:1,DM :MA =1 :1  . Найдите угол между плоскостями грани ABC  и построенного сечения.

Источники: ПВГ-2014, 11.5 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Аккуратно построим картинку. Кажется, тут явным образом никак не построить линейный угол... Будем искать обходные пути: теорема о площади ортогональной проекции нам поможет! Тетраэдр правильный, поэтому высота к грани АВС будет падать в центр правильного △АВС. При помощи подобия треугольников нетрудно определить в каком отношении проекции точек K, L и М поделят радиусы описанной окружности основания.

Подсказка 2

Рассмотрите центр основания и треугольники, полученные соединением этой точки с вершинами треугольника-проекции. Возможно, получится узнать их площади как части площадей треугольников полученных соединением центра основания с вершинами △ABC. Так мы узнаем площадь проекции!

Подсказка 3

Теорема косинусов поможет нам узнать стороны исходной фигуры-сечения. А уж искать площадь треугольника с известными сторонами мы умеем множеством способов! Осталось применить теорему о площади ортогональной проекции и задача убита.

Показать ответ и решение

Примем сторону тетраэдра за a.  Угол будем искать через косинус, который равен отношению площади S
 1  треугольника K L M −
 1 1  1 проекции треугольника KLM  на плоскость основания, к площади S2  самого треугольника KLM  - сечения.

PIC

Площадь проекции S1  определяется несложно, так как вершины K1,L1,M1− делят соответствующие радиусы описанной окружности основания (площадь основания     √-
S0 =-34 a2  ) в тех же отношениях что и соответствующие им точки K,L,M  делят боковые стороны тетраэдра. Тогда площади треугольников △K1OL1  и △COB,  △L1OM1  и △BOA,  △M1OK1  и △AOC  с общим углом при вершине O  относятся, как произведение сторон.

        (                )         √-
S = 1⋅S   1⋅ 2 + 1 ⋅ 2+ 1 ⋅ 1 =-5S = 5-3a2
 1  3  0  4 3  2  3  4  2   24 0   96

Стороны сечения будем вычислять по теореме косинусов:      7-
KL = 12a,       √13
LM =  6 a,        √3
MK  =  4 a  . Теперь вычислим площадь сечения. Косинус угла α  , лежащего напротив стороны KL  равен       -5--
cosα = √156-  . Тогда       √131
sin α= √156  . Для площади сечения получим следующий результат

    1  √3  √13 √131    √131-
S2 = 2 ⋅4-⋅-6-⋅√---a2 =-96-a2
                156

Теперь последнее действие:            √-
cosγ = S1S2-= 5√1331.

Ответ:

arccos√5√3-
     131

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!