Тема . Счёт отрезков в стерео

Случаи расположения точек

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счёт отрезков в стерео
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#81377

Длина ребра куба ABCDA ′B′C′D′ равна 1. Найдите радиус сферы, проходящей через точку B  и касающейся прямых AD,AA′ и  ′ ′
A B .

Источники: Миссия выполнима - 2024, 11.4 (см. www.fa.ru)

Подсказки к задаче

Подсказка 1

Тут у нас и параллельные прямые, и биссектрисса - давайте поищем равные углы. Помним, что биссектрисса отсекает от параллелограмма равнобедренный треугольник.

Подсказка 2

Верно, получаем MCK равнобедренный. Тогда ОС (где О - центр окружности) - серединный перпендикуляр КМ, а треугольники KOC и МОС равны и равнобедренны. На этом этапе давайте остановимся в изучении чертежа и подумаем, как нам доказать требуемое. Какой признак может указывать на принадлежность точки О описанной окружности BCD?

Подсказка 3

Конечно, в нашем случае проще всего будет доказывать через равенство вписанных углов. Для каких двух углов будет удобнее это доказать?

Подсказка 4

Конечно, легче находится, что OBC и ODC равны и опираются на дугу ОС. Это несложно вывести, если увидеть равенство треугольников BKO и DCO. Теперь остаётся только последовательно всё доказать

Показать ответ и решение

Введём декартову систему координат с центром в точке A  , ось абсцисс — луч AD  , ось ординат — луч AA ′ , ось аппликат — луч AB  .

Пусть   ′
O — проекция центра сферы на грань    ′ ′
AA B B  куба. Определим ее местоположение. Так как сфера касается прямых   ′  ′′
AA ,A B и проходит через точку B  , то расстояние от точки  ′
O до прямых   ′
AA и  ′ ′
A B и точки B  одинаково (обозначим его r  ). Тогда  ′
O лежит на луче  ′
A B  , который является биссектрисой угла    ′ ′
AA B . Осталось учесть условие, что центр сферы касается прямой AD  , то есть нужно проверить, что расстояние от центра до прямой AD  совпадает с радиусом сферы OB  .

Заметим, что есть два случая расположения точки  ′
O (на рисунке показаны разными цветами):

PIC

Случай 1: точка O ′ лежит на диагонали A ′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-− r)2  , откуда r =2− √2  . Значит, центр сферы O  имеет координаты (x1;√2-− 1;2− √2)  .

Расстояние до прямой AD  равно ∘(√2−-1)2-+(2−-√2)2  . То есть радиус OB = ∘(√2-− 1)2+(2−-√2)2 = ∘9−-6√2.

Случай 2: точка O ′ лежит на продолжении луча A′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-+r)2  , откуда r =2+ √2  . Значит, центр сферы O  в этом случае имеет координаты (x ;−√2-− 1;2+ √2)
  2  .

Расстояние до прямой AD  равно ∘--√-----2-----√--2
 (−  2− 1) + (2+ 2)  . То есть радиус      ∘ --√----2-----√--2- ∘ ---√--
OB =   (−  2− 1)+ (2+  2) =   9+6  2.

Ответ:

 ∘9-±-6√2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!