Тема Счёт отрезков в стерео

Случаи расположения точек

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счёт отрезков в стерео
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#80774

В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.

Источники: Физтех - 2024, 11.7 (см. olymp-online.mipt.ru)

Подсказки к задаче

Подсказка 1

Во-первых, надо осознать картинку. Она, как будто, симметричная, но не стоит так думать сразу. Давайте опустим высоты из точки A_1 на прямые AB, AC, и плоскость ABC. Что тогда можно заметить? Какие принципиально разные случаи есть падения высоты на плоскость ABC?

Подсказка 2

Есть два случая - падение во внутрь призмы и во вне. Однако, при всем этом, у нас расстояния от точки A_1’(основание высоты) до прямых AB и AC равны, в силу равенства прямоугольных треугольников. Как тогда можно равносильно переформулировать случаи, когда высота падает во внутрь, а когда наружу? Как связать это с равноудаленностью от сторон?

Подсказка 3

Все верно, либо точка основания высоты лежит на внешней биссектрисе, либо на внутренней(угла BAC). Давайте посмотрим на второй случай. Мы видим, что прямые AA’ и A_1A’ перпендикулярны BC. Что тогда это значит? Чем это хорошо в нашей картинке?

Подсказка 4

Тем, что тогда BB_1 перпендикулярен BC, а значит BB_1C_1C - прямоугольник. Но тогда, если сторона треугольника в основании равна а, выходит, что a * AA_1 = 2, a * A_1K = 3. Тогда, пришли к противоречию, так как A_1K > AA_1. Значит, остался второй случай. Если прямая внутренней биссектрисы, была перпендикулярна прямой BC, то внешняя биссектриса будет…

Подсказка 5

Параллельна! А тогда, высота в параллелограмме CC_1B_1B - высота призмы. Значит, остается найти C_1H. Ну, а это уже чисто дело техники(и нескольких теорем Пифагора).

Показать ответ и решение

Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.

Обозначим призму ABCA1B1C1,  площади из условия SAA1B1B = SAA1C1C = 3.

Пусть A1K, A1M  — высоты параллелограммов AA1B1B  и AA1C1C.  Тогда A1K = A1M,  т.к. площади равны, а также равны их основания, так как равносторонний треугольник.

Пусть  ′
A — проекция A1  на плоскость ABC.  Тогда  ′     ′
A K = AM,  следовательно, точка равноудалена от прямых AB  и AC.

(a) Рассмотрим случай, когда  ′
A принадлежит биссектрисе AL  угла ∠ABC.  AL  — высота, медиана и биссектриса в равностороннем треугольнике.

PIC

AL ⊥ BC   }                ′
A1A′ ⊥ BC    =⇒   BC ⊥(AA1A )  =⇒  BC ⊥ AA1  =⇒   BC ⊥ BB1

Тогда получаем, что BB1C1C  — прямоугольник. Пусть сторона треугольника ABC  равна a.  Посчитаем площадь прямоугольника и параллелограмма.

S1 =a ⋅AA1, S2 = a⋅A1K

2 =a ⋅AA1, 3= a⋅A1K

Но A1K < AA1,  тогда

3= a⋅A1K < a⋅AA1 = 2

получаем противоречие.

(b) Рассмотрим случай, когда A′ принадлежит внешней биссектрисе AL  угла ∠ABC.

PIC

AA′ ∥BC  )|}
A1A∥BB1     =⇒   (AA1A′) ∥(BB1C )
AA′ ∥BC  |)

Но (AA1A′)⊥(ABC ),  следовательно, (BB1C)⊥ (ABC ),  откуда следует, что высота CH1  параллелограмма CC1B1B  совпадает с высотой призмы (C1H = A1A′).  В итоге

V = SABC ⋅CH1 = 4√3
Ответ:

√43-

Ошибка.
Попробуйте повторить позже

Задача 2#81377

Длина ребра куба ABCDA ′B′C′D′ равна 1. Найдите радиус сферы, проходящей через точку B  и касающейся прямых AD,AA′ и  ′ ′
A B .

Источники: Миссия выполнима - 2024, 11.4 (см. www.fa.ru)

Подсказки к задаче

Подсказка 1

Тут у нас и параллельные прямые, и биссектрисса - давайте поищем равные углы. Помним, что биссектрисса отсекает от параллелограмма равнобедренный треугольник.

Подсказка 2

Верно, получаем MCK равнобедренный. Тогда ОС (где О - центр окружности) - серединный перпендикуляр КМ, а треугольники KOC и МОС равны и равнобедренны. На этом этапе давайте остановимся в изучении чертежа и подумаем, как нам доказать требуемое. Какой признак может указывать на принадлежность точки О описанной окружности BCD?

Подсказка 3

Конечно, в нашем случае проще всего будет доказывать через равенство вписанных углов. Для каких двух углов будет удобнее это доказать?

Подсказка 4

Конечно, легче находится, что OBC и ODC равны и опираются на дугу ОС. Это несложно вывести, если увидеть равенство треугольников BKO и DCO. Теперь остаётся только последовательно всё доказать

Показать ответ и решение

Введём декартову систему координат с центром в точке A  , ось абсцисс — луч AD  , ось ординат — луч AA ′ , ось аппликат — луч AB  .

Пусть   ′
O — проекция центра сферы на грань    ′ ′
AA B B  куба. Определим ее местоположение. Так как сфера касается прямых   ′  ′′
AA ,A B и проходит через точку B  , то расстояние от точки  ′
O до прямых   ′
AA и  ′ ′
A B и точки B  одинаково (обозначим его r  ). Тогда  ′
O лежит на луче  ′
A B  , который является биссектрисой угла    ′ ′
AA B . Осталось учесть условие, что центр сферы касается прямой AD  , то есть нужно проверить, что расстояние от центра до прямой AD  совпадает с радиусом сферы OB  .

Заметим, что есть два случая расположения точки  ′
O (на рисунке показаны разными цветами):

PIC

Случай 1: точка O ′ лежит на диагонали A ′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-− r)2  , откуда r =2− √2  . Значит, центр сферы O  имеет координаты (x1;√2-− 1;2− √2)  .

Расстояние до прямой AD  равно ∘(√2−-1)2-+(2−-√2)2  . То есть радиус OB = ∘(√2-− 1)2+(2−-√2)2 = ∘9−-6√2.

Случай 2: точка O ′ лежит на продолжении луча A′B  .

Тогда из теоремы Пифагора для прямоугольного треугольника O ′HA ′ получим: r2+ r2 = (√2-+r)2  , откуда r =2+ √2  . Значит, центр сферы O  в этом случае имеет координаты (x ;−√2-− 1;2+ √2)
  2  .

Расстояние до прямой AD  равно ∘--√-----2-----√--2
 (−  2− 1) + (2+ 2)  . То есть радиус      ∘ --√----2-----√--2- ∘ ---√--
OB =   (−  2− 1)+ (2+  2) =   9+6  2.

Ответ:

 ∘9-±-6√2

Ошибка.
Попробуйте повторить позже

Задача 3#63888

 ABCD  — правильная пирамида, в основании которой лежит правильный треугольник ABC  со стороной 2. Боковые ребра пирамиды равны 3. Найдите площадь равнобедренного треугольника, одна вершина которого совпадает с A  , другая — с серединой CD  , а третья лежит на отрезке BC.

Показать ответ и решение

Обозначим искомый треугольник AMN, M  — середина CD,N  на BC  . Пусть T  — середина AB  , тогда MT  — высота треугольника. Если   ′
M — проекция M  на высоту CT  треугольника ABC  , то по теореме Фалеса    ′
CM равна половине CO  , где O  — проекция  D  и одновременно центр описанной окружности (потому что боковые рёбра пирамиды равны), то есть равна половине радиуса описанной около ABC окружности. По теореме синусов             ∘    √-
R = 2∕(2⋅sin60 )= 2∕ 3  , тогда

  ′         ′       ∘  R-  2-
TM = CT − CM = 2sin60 − 2 = √3  , а

           √------   √--
MM ′ = DO2-=-CD22−R2-= 2√233-  ,

тем самым TM = √M-′T2+-M′M2 = ∘23+-4 =∘ 39= √13
                     12  3    12   2

Поскольку AT = AB∕2= 1  , AB ⊥(CTD ),  то по теореме Пифагора

     ∘---2----2  ∘ 13---  √17-
AM =  TM  + AT  =   4 + 1= 2

Возможны случаи:

1) AM = MN  . В этом случае N  совпадает с B  , поскольку пирамида симметрична относительно плоскости, проходящей через середину CD  и перпендикулярной AB  . Тогда                        √--
SAMN = 12 ⋅AB ⋅MT = MT = -123

2) AM  = AN  . Но тогда      √ --
AN  =-217 >2 =AB = AC  . Но тогда точка N  лежит вне отрезка BC  , иначе расстояние от A  до неё было бы не больше длины стороны треугольника ABC  .

3) AN =MN  . Заметим, что cos∠BCD = BCC∕D2= 13  . Пусть CN = x,NB = 2− x  , запишем теоремы косинусов для △MCN  и △ABN  , выберем из первого MN  , а из второго AN  в качестве противолежащих сторон, откуда

AN2 = (2 − x)2+22− 2⋅2(2 − x)⋅ 1 =MN2 =x2 + 9 − 2 ⋅ 3x⋅ 1=⇒ x= 7
                          2            4     2  3       4

Подставляя x  в теорему косинусов, получаем MN2 = 4196 + 94 − 74 = 5716  . Посчитаем высоту h  из вершины N  в треугольнике ANM  с учётом AN = NM

                   ∘ ------- ∘--  √--
h= ∘NM2--− (AM-∕2)2 = 57− 17=   5= -10
                     16  16    2   2

Тогда         1        1  √17- √10  √170-
SAMN  = 2 ⋅h⋅AM = 2 ⋅ 2 ⋅ 2 = 8 .

Ответ:

 √170
  8  или √13
 2

Ошибка.
Попробуйте повторить позже

Задача 4#33366

Рассмотрим всевозможные тетраэдры ABCD  , в которых AB = 2,AC =CB = 5,AD  =  DB  =6  . Каждый такой тетраэдр впишем в цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро CD  было параллельно оси цилиндра. Выберем тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина CD  в таком тетраэдре?

Источники: Физтех - 2021, 11.2 (см. olymp.mipt.ru)

Подсказки к задаче

Подсказка 1

Давайте подумаем, а как использовать равные отрезки? В каких треугольниках они состоят, что можно отметить в таких фигурах?

Подсказка 2

Отметим E — середину AB в равнобедренных треугольниках ADB и ACB! Какие тогда выводы можно сделать об AB?

Подсказка 3

AB — хорда окружности, перпендикулярной оси цилиндра. Давайте теперь подумаем, а в каких случаях мы смогли бы уменьшить радиус цилиндра?…

Подсказка 4

Мы можем уменьшать радиус цилиндра, если AB не является диаметром указанной окружности. Какие тогда выводы можно сделать из условия на минимальность радиуса цилиндра?

Подсказка 5

Мы должны рассматривать такие тетраэдры, в которых AB является диаметром цилиндра! Давайте теперь попробуем воспользоваться тем, что CD перпендикулярен основанию цилиндра. Что полезного можно отметить?

Подсказка 6

Отметим H — проекцию точек C и D на основание цилиндра! Осталось лишь воспользоваться тем, AB — диаметр, и немного посчитать ;)

Показать ответ и решение

Пусть E  — середина AB.CE  и DE  — медианы равнобедренных треугольников ABC  и ABD  , a значит, биссектрисы и высоты. То есть AB ⊥ CE,AB ⊥ DE  . Значит, отрезок AB  перпендикулярен плоскости CDE  , следовательно, AB ⊥ CD  .

PIC

Таким образом, AB  лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через α  ). Сечение цилиндра этой плоскостью — окружность, а AB  является хордой этой окружности. Тогда радиус цилиндра минимален, если AB− диаметр. Отметим, что это возможно в силу того, что отрезки DE  и CE  длиннее, чем 12AB =1  . Действительно, из треугольников ACE  и ADE  следует, что

CE = ∘52-− 12 = 2√6,DE = ∘62−-12 = √35

Рассмотрим тетраэдр, в котором AB  является диаметром цилиндра. Возможны 2 случая: точки C  и D  лежат по одну (этот случай представлен выше) или по разные стороны плоскости α  .

Пусть H  - проекция точек C  и D  на плоскость α  . Угол ∠AHB  =90∘ , так как он вписан в окружность и опирается на её диаметр. AH = BH  в силу равенства треугольников ACH  и BCH  . Тогда AH =       √-
BH =  2  . По теореме Пифагора в прямоугольных треугольниках AHC  и DHC  соответственно: CH  =           --              --
√25− 2-=√ 23,DH = √36−-2= √34  .

Тогда, если точки C  и D  лежат по одну сторону от плоскости α  , то CD =DH  − CH = √34− √23  . Если точки C  и D  лежат по разные стороны от плоскости α  , то CD = DH + CH = √34+√23-  .

Ответ:

 √34-±√23

Критерии оценки

Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;

найдены оба значения 𝐶𝐷 – 3 балла;

найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.

Ошибка.
Попробуйте повторить позже

Задача 5#63894

В основании пирамиды SABC  лежит треугольник ABC  со сторонами AB = BC = 3√2-  и AC =2√6  . Высота пирамиды равна √ -
  6 и видна из вершин A  и C  под одним и тем же углом, равным      √1
arcsin 3  . Под каким углом она видна из вершины B?

Источники: ПВГ-2019, 11.4 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Пусть SH – высота пирамиды, подумайте, на каком значимом отрезке в треугольнике лежит точка Н?

Подсказка 2

Она лежит на медиане, биссектрисе и высоте треугольника △АВС! Тогда мы без труда сможем выразить ВН через стороны треугольника и данные/интересующие нас уголочки (только не забудьте рассмотреть два случая: ведь точка Н может лежать как внутри, так и вне треугольника △АВС), откуда мы и можем найти тригонометрическую функцию искомого угла

Показать ответ и решение

Поскольку высота SH  пирамиды видна из вершин A  и C  под одним и тем же углом, точка H  лежит на медиане (она же биссектриса и высота) BM  треугольника ABC  или её продолжении.

PIC

PIC

Если SH =h,AB = BC =a  , AC = b  и ∠SAH = ∠SCH = α  , а искомый угол ∠SBH = β  , то имеем

                      ∘------  ∘ -----------
BH = hctgβ =BM  ±MH  =  a2− b2±   h2 ctg2α− b2,
                            4            4

откуда, подставляя данные задачи, получаем       √-
ctgβ = 2± 1  , в зависимости от того, лежит ли точка H  внутри треугольника ABC  или вне него. Значит,    π
β = 8  или    3π
β = 8 .

Ответ:

 π∕8  или 3π∕8

Ошибка.
Попробуйте повторить позже

Задача 6#69439

Рассматриваются плоские сечения правильной пирамиды SABCD  , параллельные боковому ребру SB  и диагонали основания AC  , в которые можно вписать окружность. Какие значения может принимать радиус этих окружностей, если AC = 1  ,          2
cos∠SBD = 3?

Источники: ПВГ-2010, 11.1 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

В этой задаче условие может выглядеть очнеь страшно, поэтому первым делом нужно нарисовать аккуратный чертеж, чтобы понять, с какими объектами мы работаем. Теперь давайте подумаем, нам дана правильная пирамида (какой вывод можно сделать про ее основание?), мы знаем сторону и один из углов. Попробуем найти длины полезных отрезков в этой пирамиде. Например, с помощью косинуса SBD и длины OB (O - центр основания) можно найти SB - боковое ребро пирамиды!

Подсказка 2

Итак, вспомним, что это можно сделать, опустив высоту из S и заметив, что SOB - прямоугольный треугольник с известным нам катетом и углом. Итак, мы нашли длину боковой стороны, а теперь подумаем про сечения. Если вы нарисовали чертеж - подумайте, какие вообще варианты сечений у нас могут получаться? (вряд ли сечением пирамиды будет двенадцатиугольник, например). Затем попробуем рассмотреть каждый вид сечений отдельно.

Подсказка 3

Верно! У нас могут быть сечения всего двух видов - пятиугольные и треугольные! Мы знаем, что наше сечение пересекает плоскость основания по прямой A₁C₁, параллельной прямой AC. Обозначим за O- центр ABCD. Какое будет сечение, если прямая A₁C₁ лежит внутри треугольника ADC?

Подсказка 4

Верно! Это будет треугольник. Пускай S₁- его вершина, лежащая на ребре SD, а x- длина A₁C₁. Попробуйте найти S₁B₁ (выразить через х), где B₁- точка пересечения A₁C₁ и BD, если вы знаете, что S₁B₁ параллельна SB...

Подсказка 5

Площадь сечения должно получиться S₁B₁⋅A₁C₁/2=3x²/16. S₁C₁ можно найти из теоремы Пифагора. Воспользуйтесь тем, что r=S/p для оценки радиуса. А какое сечение будет, если A₁C₁ лежит внутри треугольника ACB?

Подсказка 6

Домик). Переобозначим A₁C₁ за A₂C₂=x, A₃- точка пересечения сечения и AS, C₃- сечения и SC, Q- сечения и SD, B₃- сечения и BD. Из того, что A₂A₃ и C₂C₃ параллельны SB и A₂C₂ и A₃C₃ параллельны AC, можно получить, что A₂A₃C₃C₂- параллелограмм, а т.к. SB перпендикулярен AC- прямоугольник. Попробуйте найти отрезки A₂A₃ и QA₃...

Подсказка 7

Если в наш пятиугольник можно вписать окружность, то будет верна формула S=pr. При этом мы знаем, что r=x/2, ведь наша окружность касается параллельных прямых A₂A₃ и C₂C₃, расстояние между которыми равно x. Осталось только посчитать площадь и полупериметр, и решить уравнение S=px/2

Показать ответ и решение

Так как пирамида правильная, то в основании лежит квадрат с диагоналями AC =BD = 1  , пусть O  — его центр. Тогда SO  является высотой пирамиды, так что из условия про косинус находим

2            OB   0,5
3 =cos∠SBD = SB-= SB-

    3
SB = 4

Плоскость сечения параллельна SB  , поэтому содержит параллельную SB  прямую из плоскости SBD  . Поэтому сечение может быть двух видов:

PIC

1 случай) треугольник A1S1C1  , где A1C1  лежит внутри △ADC  .

Тогда 0<A1C1 < 1  (строго меньше единицы, потому что сечение параллельно AC  , содержать AC  не может). Пусть                            x
A1C1 =x  =⇒   A1B1 = B1C1 = 2  .

                   ∘            x
∠A1DB1 =∠DA1B1 = 45   =⇒  DB1 = 2

△DS1B1 ∼ △DSB   =⇒   S1B1= DB1-  =⇒
                     SB     DB

=⇒   S1B1 = x2- =⇒   S1B1 = 3x
       34    1              8

Теперь найдём, чему равняется O1B1  (то есть радиус вписанной окружности)

PIC

      ∘ --------
        x2  9x2  5x
S1C1 =  4-+ 64-= 8-

sin(∠O1S1H)= O1H- =-3xr-- =
            O1S1   8 − r

  x                     (   )
=-25x-  =⇒  r = x  =⇒  r ∈ 0;1
  8           6            6

2 случай) Пятиугольное сечение плоскостью A C C
  2 2 3  , где A C
  22  лежит внутри △ABC  . Заметим, что A C || A C
 2 2   3 3  и A C  = A C ,
 2 2     3 3  поэтому A A  || C C
 2 3   3 2  и A A  = C C .
 2 3    3 2

Пусть    BB3-
x= BO .

Тогда из подобий △SOB  ∼△S2OB2  и △SAC ∼ △SA3C3  получаем

   A3C3  SS2   BB3   A2C2
x= -AC-= -SO = BO--= -AC-.

Значит, S B                             3(1− x)
-2SB3= 1− x. Тогда S2B3 = SB⋅(1− x)=--4--

Также имеем BB3-= BB3-= x
 BD   2BO   2

Откуда QB    DB       x
SB3-= BD3-= 1− 2             3(2− x)
=⇒   QB3 = --8---

Так как A2C2 = x  =⇒  A C  =x
 AC             22

QS2 = 3(28− x)− 3(1−4 x) = 3x8  . Тогда по теореме Пифагора QC3 = 5x8-  .

PIC

Воспользуемся формулой S =pr:

                     12x(1− x)  3x2  12x− 9x2
S = SA3C3C2A2 + SA3QC3 =-16---+ 16-= ---16---

   x  3(1− x) 5x   6x +12
p= 2 +---4--+ -8 = -16---

Тогда r = S= 12x−-9x2= x  =⇒   x= 1  =⇒   r= x = 1
    p   6x+ 12   2          2          2   4

Ответ:

(0;1 )∪{ 1}
  6     4

Рулетка
Вы можете получить скидку в рулетке!