Случаи расположения точек
Ошибка.
Попробуйте повторить позже
В основании призмы лежит равносторонний треугольник площади 1. Площади её боковых граней равны 3, 3 и 2. Найдите объём призмы.
Подсказка 1
Во-первых, надо осознать картинку. Она, как будто, симметричная, но не стоит так думать сразу. Давайте опустим высоты из точки A_1 на прямые AB, AC, и плоскость ABC. Что тогда можно заметить? Какие принципиально разные случаи есть падения высоты на плоскость ABC?
Подсказка 2
Есть два случая - падение во внутрь призмы и во вне. Однако, при всем этом, у нас расстояния от точки A_1’(основание высоты) до прямых AB и AC равны, в силу равенства прямоугольных треугольников. Как тогда можно равносильно переформулировать случаи, когда высота падает во внутрь, а когда наружу? Как связать это с равноудаленностью от сторон?
Подсказка 3
Все верно, либо точка основания высоты лежит на внешней биссектрисе, либо на внутренней(угла BAC). Давайте посмотрим на второй случай. Мы видим, что прямые AA’ и A_1A’ перпендикулярны BC. Что тогда это значит? Чем это хорошо в нашей картинке?
Подсказка 4
Тем, что тогда BB_1 перпендикулярен BC, а значит BB_1C_1C - прямоугольник. Но тогда, если сторона треугольника в основании равна а, выходит, что a * AA_1 = 2, a * A_1K = 3. Тогда, пришли к противоречию, так как A_1K > AA_1. Значит, остался второй случай. Если прямая внутренней биссектрисы, была перпендикулярна прямой BC, то внешняя биссектриса будет…
Подсказка 5
Параллельна! А тогда, высота в параллелограмме CC_1B_1B - высота призмы. Значит, остается найти C_1H. Ну, а это уже чисто дело техники(и нескольких теорем Пифагора).
Если бы призма была прямая, то площади боковых граней были бы равны. Значит, призма наклонная.
Обозначим призму площади из условия
Пусть — высоты параллелограммов и Тогда т.к. площади равны, а также равны их основания, так как равносторонний треугольник.
Пусть — проекция на плоскость Тогда следовательно, точка равноудалена от прямых и
(a) Рассмотрим случай, когда принадлежит биссектрисе угла — высота, медиана и биссектриса в равностороннем треугольнике.
Тогда получаем, что — прямоугольник. Пусть сторона треугольника равна Посчитаем площадь прямоугольника и параллелограмма.
Но тогда
(b) Рассмотрим случай, когда принадлежит внешней биссектрисе угла
Но следовательно, откуда следует, что высота параллелограмма совпадает с высотой призмы В итоге
Ошибка.
Попробуйте повторить позже
Длина ребра куба равна 1. Найдите радиус сферы, проходящей через точку и касающейся прямых и .
Подсказка 1
Тут у нас и параллельные прямые, и биссектрисса - давайте поищем равные углы. Помним, что биссектрисса отсекает от параллелограмма равнобедренный треугольник.
Подсказка 2
Верно, получаем MCK равнобедренный. Тогда ОС (где О - центр окружности) - серединный перпендикуляр КМ, а треугольники KOC и МОС равны и равнобедренны. На этом этапе давайте остановимся в изучении чертежа и подумаем, как нам доказать требуемое. Какой признак может указывать на принадлежность точки О описанной окружности BCD?
Подсказка 3
Конечно, в нашем случае проще всего будет доказывать через равенство вписанных углов. Для каких двух углов будет удобнее это доказать?
Подсказка 4
Конечно, легче находится, что OBC и ODC равны и опираются на дугу ОС. Это несложно вывести, если увидеть равенство треугольников BKO и DCO. Теперь остаётся только последовательно всё доказать
Введём декартову систему координат с центром в точке , ось абсцисс — луч , ось ординат — луч , ось аппликат — луч .
Пусть — проекция центра сферы на грань куба. Определим ее местоположение. Так как сфера касается прямых и проходит через точку , то расстояние от точки до прямых и и точки одинаково (обозначим его ). Тогда лежит на луче , который является биссектрисой угла . Осталось учесть условие, что центр сферы касается прямой , то есть нужно проверить, что расстояние от центра до прямой совпадает с радиусом сферы .
Заметим, что есть два случая расположения точки (на рисунке показаны разными цветами):
Случай 1: точка лежит на диагонали .
Тогда из теоремы Пифагора для прямоугольного треугольника получим: , откуда . Значит, центр сферы имеет координаты .
Расстояние до прямой равно . То есть радиус
Случай 2: точка лежит на продолжении луча .
Тогда из теоремы Пифагора для прямоугольного треугольника получим: , откуда . Значит, центр сферы в этом случае имеет координаты .
Расстояние до прямой равно . То есть радиус
Ошибка.
Попробуйте повторить позже
— правильная пирамида, в основании которой лежит правильный треугольник со стороной 2. Боковые ребра пирамиды равны 3. Найдите площадь равнобедренного треугольника, одна вершина которого совпадает с , другая — с серединой , а третья лежит на отрезке
Обозначим искомый треугольник — середина на . Пусть — середина , тогда — высота треугольника. Если — проекция на высоту треугольника , то по теореме Фалеса равна половине , где — проекция и одновременно центр описанной окружности (потому что боковые рёбра пирамиды равны), то есть равна половине радиуса описанной около ABC окружности. По теореме синусов , тогда
, а
,
тем самым
Поскольку , то по теореме Пифагора
Возможны случаи:
1) . В этом случае совпадает с , поскольку пирамида симметрична относительно плоскости, проходящей через середину и перпендикулярной . Тогда
2) . Но тогда . Но тогда точка лежит вне отрезка , иначе расстояние от до неё было бы не больше длины стороны треугольника .
3) . Заметим, что . Пусть , запишем теоремы косинусов для и , выберем из первого , а из второго в качестве противолежащих сторон, откуда
Подставляя в теорему косинусов, получаем . Посчитаем высоту из вершины в треугольнике с учётом
Тогда
или
Ошибка.
Попробуйте повторить позже
Рассмотрим всевозможные тетраэдры , в которых . Каждый такой тетраэдр впишем в цилиндр так, чтобы все вершины оказались на его боковой поверхности, причём ребро было параллельно оси цилиндра. Выберем тетраэдр, для которого радиус цилиндра - наименьший из полученных. Какие значения может принимать длина в таком тетраэдре?
Источники:
Подсказка 1
Давайте подумаем, а как использовать равные отрезки? В каких треугольниках они состоят, что можно отметить в таких фигурах?
Подсказка 2
Отметим E — середину AB в равнобедренных треугольниках ADB и ACB! Какие тогда выводы можно сделать об AB?
Подсказка 3
AB — хорда окружности, перпендикулярной оси цилиндра. Давайте теперь подумаем, а в каких случаях мы смогли бы уменьшить радиус цилиндра?…
Подсказка 4
Мы можем уменьшать радиус цилиндра, если AB не является диаметром указанной окружности. Какие тогда выводы можно сделать из условия на минимальность радиуса цилиндра?
Подсказка 5
Мы должны рассматривать такие тетраэдры, в которых AB является диаметром цилиндра! Давайте теперь попробуем воспользоваться тем, что CD перпендикулярен основанию цилиндра. Что полезного можно отметить?
Подсказка 6
Отметим H — проекцию точек C и D на основание цилиндра! Осталось лишь воспользоваться тем, AB — диаметр, и немного посчитать ;)
Пусть — середина и — медианы равнобедренных треугольников и , a значит, биссектрисы и высоты. То есть . Значит, отрезок перпендикулярен плоскости , следовательно, .
Таким образом, лежит в плоскости, перпендикулярной оси цилиндра (обозначим эту плоскость через ). Сечение цилиндра этой плоскостью — окружность, а является хордой этой окружности. Тогда радиус цилиндра минимален, если диаметр. Отметим, что это возможно в силу того, что отрезки и длиннее, чем . Действительно, из треугольников и следует, что
Рассмотрим тетраэдр, в котором является диаметром цилиндра. Возможны 2 случая: точки и лежат по одну (этот случай представлен выше) или по разные стороны плоскости .
Пусть - проекция точек и на плоскость . Угол , так как он вписан в окружность и опирается на её диаметр. в силу равенства треугольников и . Тогда . По теореме Пифагора в прямоугольных треугольниках и соответственно: .
Тогда, если точки и лежат по одну сторону от плоскости , то . Если точки и лежат по разные стороны от плоскости , то .
Доказано, что 𝐴𝐵 – диаметр цилиндра наименьшего радиуса – 2 балла; если при этом не проверено, что точки 𝐶 и 𝐷 могут лежать на боковой поверхности такого цилиндра (например, можно доказать, что треугольники 𝐴𝐵𝐶 и 𝐴𝐵𝐷 остроугольные; можно сделать, как в решении), то 1 балл вместо 2;
найдены оба значения 𝐶𝐷 – 3 балла;
найдено только одно значение 𝐶𝐷 – 1 балл вместо 3.
Ошибка.
Попробуйте повторить позже
В основании пирамиды лежит треугольник со сторонами и . Высота пирамиды равна и видна из вершин и под одним и тем же углом, равным . Под каким углом она видна из вершины
Источники:
Подсказка 1
Пусть SH – высота пирамиды, подумайте, на каком значимом отрезке в треугольнике лежит точка Н?
Подсказка 2
Она лежит на медиане, биссектрисе и высоте треугольника △АВС! Тогда мы без труда сможем выразить ВН через стороны треугольника и данные/интересующие нас уголочки (только не забудьте рассмотреть два случая: ведь точка Н может лежать как внутри, так и вне треугольника △АВС), откуда мы и можем найти тригонометрическую функцию искомого угла
Поскольку высота пирамиды видна из вершин и под одним и тем же углом, точка лежит на медиане (она же биссектриса и высота) треугольника или её продолжении.
Если , и , а искомый угол , то имеем
откуда, подставляя данные задачи, получаем , в зависимости от того, лежит ли точка внутри треугольника или вне него. Значит, или
или
Ошибка.
Попробуйте повторить позже
Рассматриваются плоские сечения правильной пирамиды , параллельные боковому ребру и диагонали основания , в которые можно вписать окружность. Какие значения может принимать радиус этих окружностей, если ,
Источники:
Подсказка 1
В этой задаче условие может выглядеть очнеь страшно, поэтому первым делом нужно нарисовать аккуратный чертеж, чтобы понять, с какими объектами мы работаем. Теперь давайте подумаем, нам дана правильная пирамида (какой вывод можно сделать про ее основание?), мы знаем сторону и один из углов. Попробуем найти длины полезных отрезков в этой пирамиде. Например, с помощью косинуса SBD и длины OB (O - центр основания) можно найти SB - боковое ребро пирамиды!
Подсказка 2
Итак, вспомним, что это можно сделать, опустив высоту из S и заметив, что SOB - прямоугольный треугольник с известным нам катетом и углом. Итак, мы нашли длину боковой стороны, а теперь подумаем про сечения. Если вы нарисовали чертеж - подумайте, какие вообще варианты сечений у нас могут получаться? (вряд ли сечением пирамиды будет двенадцатиугольник, например). Затем попробуем рассмотреть каждый вид сечений отдельно.
Подсказка 3
Верно! У нас могут быть сечения всего двух видов - пятиугольные и треугольные! Мы знаем, что наше сечение пересекает плоскость основания по прямой A₁C₁, параллельной прямой AC. Обозначим за O- центр ABCD. Какое будет сечение, если прямая A₁C₁ лежит внутри треугольника ADC?
Подсказка 4
Верно! Это будет треугольник. Пускай S₁- его вершина, лежащая на ребре SD, а x- длина A₁C₁. Попробуйте найти S₁B₁ (выразить через х), где B₁- точка пересечения A₁C₁ и BD, если вы знаете, что S₁B₁ параллельна SB...
Подсказка 5
Площадь сечения должно получиться S₁B₁⋅A₁C₁/2=3x²/16. S₁C₁ можно найти из теоремы Пифагора. Воспользуйтесь тем, что r=S/p для оценки радиуса. А какое сечение будет, если A₁C₁ лежит внутри треугольника ACB?
Подсказка 6
Домик). Переобозначим A₁C₁ за A₂C₂=x, A₃- точка пересечения сечения и AS, C₃- сечения и SC, Q- сечения и SD, B₃- сечения и BD. Из того, что A₂A₃ и C₂C₃ параллельны SB и A₂C₂ и A₃C₃ параллельны AC, можно получить, что A₂A₃C₃C₂- параллелограмм, а т.к. SB перпендикулярен AC- прямоугольник. Попробуйте найти отрезки A₂A₃ и QA₃...
Подсказка 7
Если в наш пятиугольник можно вписать окружность, то будет верна формула S=pr. При этом мы знаем, что r=x/2, ведь наша окружность касается параллельных прямых A₂A₃ и C₂C₃, расстояние между которыми равно x. Осталось только посчитать площадь и полупериметр, и решить уравнение S=px/2
Так как пирамида правильная, то в основании лежит квадрат с диагоналями , пусть — его центр. Тогда является высотой пирамиды, так что из условия про косинус находим
Плоскость сечения параллельна , поэтому содержит параллельную прямую из плоскости . Поэтому сечение может быть двух видов:
1 случай) треугольник , где лежит внутри .
Тогда (строго меньше единицы, потому что сечение параллельно , содержать не может). Пусть .
Теперь найдём, чему равняется (то есть радиус вписанной окружности)
2 случай) Пятиугольное сечение плоскостью , где лежит внутри . Заметим, что и поэтому и
Пусть
Тогда из подобий и получаем
Значит,
Также имеем
Откуда
Так как
. Тогда по теореме Пифагора .
Воспользуемся формулой
Тогда