Тема . Математический анализ

.19 Пределы функций. Непрерывность. Точки разрыва.

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела математический анализ
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#39080

Вычислить  lim  xx
x→0+

Показать ответ и решение

Преобразуем наше выражение.

                             1         1                                 ln1t
lim  xx = lim ex lnx замена= x = t lim  elntt в силу непрерывн=ости экспоненты etl→im+∞ t = e0 = 1.
x→0+      x→0+                  t→+ ∞

(И здесь мы воспользовались тем, что       ln-1t
tl→i+m∞  t =  0,  поскольку ln(бесконечн о м алой)  убывает медленнее, чем 1.
t  Показать это можно, например, при помощи правила Л’Опиталя.)

Ответ:

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!