Поиск объёмов или решение через вспомогательные объёмы
Ошибка.
Попробуйте повторить позже
Боковые рёбра треугольной пирамиды попарно перпендикулярны, а стороны основания равны , , . Центр сферы, которая касается всех боковых граней, лежит на основании пирамиды. Найдите радиус этой сферы.
Источники:
Подсказка 1
Для начала, можно найти оставшиеся длины ребер: у нас же они перпендикулярны, а значит, можно применить теорему Пифагора!
Подсказка 2
С длинами разобрались, а что делать с радиусом вписанной сферы? На плоскости у нас есть полезный факт, что r = S/p, где S - площадь треугольника, а p - полупериметр. Если вы помните доказательство этого факта, то проведите аналогичные рассуждения здесь)
Подсказка 3
Если не помните, то сделайте вот что: вот у нас есть центр сферы O. Проведем отрезки из O ко всем вершинам пирамиды. Тогда он разбивается на 3 маленьких тетраэдра. Тогда его объем - сумма объемов маленьких тетраэдров. А чему равны объемы маленьких тетраэдров?)
Подсказка 4
А они равны 1/3 × r × (площадь грани). Причем площадь грани очень легко посчитать т.к. боковые ребра - перпендикулярны, и их длины мы знаем! Осталось ещё вспомнить формулу объема пирамиды у которой боковые ребра перпендикулярны, и дело в шляпе!
Обозначим основание пирамиды — , вершину пирамиды — , центр сферы — , радиус сферы — . Пусть . Обозначим .
Так как радиус, проведённый в точку касания сферы и плоскости, ортогонален плоскости, имеем:
С другой стороны, так как боковые рёбра попарно перпендикулярны, то
Поэтому
Числа находятся из системы уравнений:
Складывая уравнения системы и деля на два, получим:
откуда . Тогда
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!