Поиск объёмов или решение через вспомогательные объёмы
Ошибка.
Попробуйте повторить позже
Боковое ребро правильной треугольной пирамиды наклонено к плоскости ее основания под углом . В пирамиду вписан куб так, что четыре его вершины лежат на основании пирамиды, а другие четыре — на ее боковых гранях. Найти отношение объемов куба и пирамиды.
Источники:
Подсказка 1
Давайте для начала обозначим за a ребро пирамиды. Получается нам нужно выразить объёмы фигур через a. Начнём с пирамиды. Для объёма нам нужны основание и высота. Так как пирамида у нас правильная, то куда падает её высота?
Подсказка 2
Верно, в центр основания правильного треугольника, то есть в центр описанной окружности. Теперь радиус мы можем легко найти, а угол будет как раз тот самый из условия. Отлично, высота найдена. А площадь основания равна площади правильного треугольника. Давайте теперь попробуем разобраться с кубом. Удобно будет ввести ребро куба b и попробовать выразить его через a. Тогда будет победа. Но какую ещё вспомогательную фигуру хочется рассмотреть, учитывая расположение куба?
Подсказка 3
Да, давайте рассмотрим сечение, которое получается из-за куба. Понятно, что это будет треугольник, подобный основанию, и мы даже знаем коэффициент подобия треугольников. То есть мы знаем длину стороны сечения. Как теперь можно вторым способом посчитать это основание?
Подсказка 4
Верно, рассмотрим сечение как треугольник, внутрь которого вписан квадрат. Мы легко можем выразить, как сумму отрезков, сторону треугольника через b. Наконец с помощью равенства из прошлой подсказки выражаем b через a и находим объём куба. Осталось только посчитать отношение, и победа!
Пусть – сторона основания, – угол наклона бокового ребра, – высота пирамиды, — радиус окружности, описанной около основания. В правильном треугольнике со стороной радиус описанной окружности: .
Из прямоугольного треугольника находим высоту пирамиды: .
Площадь основания пирамиды
Объем пирамиды:
Пусть ребро вписанного куба и – сечение пирамиды плоскостью верхней грани куба.
Обозначим через сторону треугольника этого сечения . Треугольники и подобны с коэффициентом подобия: .
И поэтому .
Рассмотрим треугольник со вписанной гранью куба.
Сторона
Приравнивая два выражения для , находим : .
Так как объем куба , то искомое отношение объемов:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!