Тема . Счёт площадей и объёмов

Поиск объёмов или решение через вспомогательные объёмы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счёт площадей и объёмов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79606

Ортогональной проекцией правильной треугольной пирамиды на некоторую плоскость является параллелограмм с острым углом 60∘ . Найдите объём пирамиды, если площадь её боковой поверхности равна 54.

Источники: ОММО - 2024, задача 8 (см. olympiads.mccme.ru)

Показать ответ и решение

Пусть сторона основания пирамиды DABC  с вершиной D  равна a  , а боковое ребро равно b  . Для построения проекции достаточно рассмотреть две пары скрещивающихся ребер, например, AB, CD,BC  и AD  , проекции которых являются сторонами параллелограмма A1B1C1D1.

PIC

Пусть MN  — общий перпендикуляр пары рёбер AB  и CD  , а PQ  — общий перпендикуляр скрещивающихся рёбер AD  и BC.  Плоскость проекции Ω  параллельна как MN  , так и P Q  , поскольку ортогональной проекцией пирамиды является параллелограмм. Отрезки MN  и PQ  проектируются на плоскость Ω  без изменения длины в высоты параллелограмма M1N1  и P1Q1  , так как ABB1A1  и DCC1D1  обе перпендикулярны Ω  и будут параллельны друг другу, т.к. A1B1C1D1  — параллелограмм. То есть MN  не просто общий перпендикуляр AB  и CD  , но и общий перпендикуляр двух вышеописанных плоскостей. А значит, ещё это и общий перпендикуляр для A1B1  и C1D1.

Поскольку пирамида правильная, MN  = PQ  . Следовательно, M1N1 = P1Q1.

В параллелограмме A1B1C1D1  высоты, проведённые к смежным сторонам, равны. Значит, параллелограмм является ромбом.

Пусть ребро AB  наклонено к плоскости Ω  под углом α  , тогда ребро CD  , которое перпендикулярно AB  , наклонено под углом 90∘− α.  Отсюда acosα= bsinα.

PIC

Обозначим ab = λ  . Тогда tgα= λ,A1B1 = acosα = √1a+λ2  .

Найдём расстояние между скрещивающимися рёбрами правильной треугольной пирамиды как высоту сечения DMC  :

                  ∘ ------
              a√3-   2  a2
MC ⋅H = b⋅MN,  2  ⋅ b − 3 = b⋅MN

откуда

        ∘------    ∘-----
MN  = a2b 3b2− a2 = a2 3− λ2

Тогда синус острого угла пирамиды равен sinφ = MA11ND11 = AM1NB1  . Подставляя найденные выражения и данное в условии значение φ =60∘ , получим  -
√32 = 12√3-−-λ2√1-+λ2-  , откуда λ= 0  (что невозможно) или λ2 =2.

Площадь боковой поверхности пирамиды равна

     ∘ ----2-    2 √----2
S = 3a b2− a-= 3a-⋅-4−-λ-
    2      4    4    λ

Подставив S = 54  и λ= √2  , найдём

a2 =72,b2 = a2= 36
          λ2

Объём правильной пирамиды равен

    a2∘ --2--2   √-------
V = 12  3b − a = 6 108− 72=36
Ответ: 36

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!