Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71956

В пирамиде SA A ...A
  1 2   n  все боковые рёбра равны. Точка X
 1  — середина дуги A A
 1 2  описанной окружности треугольника SA A ,
   1 2  точка X2  — середина дуги A2A3  описанной окружности треугольника SA2A3  и т. д., точка Xn  — середина дуги AnA1  описанной окружности треугольника SAnA1.  Докажите, что описанные окружности треугольников X1A2X2,X2A3X3,...,XnA1X1  пересекаются в одной точке.

PIC

Источники: СпбОШ - 2021, задача 11.3(см. www.pdmi.ras.ru)

Подсказки к задаче

Подсказка 1:

Давайте поймем, поизучаем сферу, описанную вокруг данной фигуры. Во-первых, почему вообще можно описать сферу? Во-вторых, где у неё центр?

Подсказка 2:

Вокруг многоугольника A₁A₂...Aₙ можно описать окружность, значит, вокруг всей фигуры можно описать сферу. Пусть центр сферы — это точка P. Она равноудалена от точек A, следовательно, лежит на прямой, перпендикулярной плоскости основания и проходящей через S. Что мы можем сказать про точки X? Где они лежат?

Подсказка 3:

Они тоже лежат на этой сфере! Давайте попробуем угадать, где может находиться искомая точка. Попробуйте нарисовать фигуру и провести окружности.

Подсказка 4:

Давайте попробуем доказать, что искомая точка пересечения диаметрально противоположна S. Тогда нужно доказать, что N, X(k−1), X(k) и A(k) лежат на одной плоскости. Как это можно сделать?

Подсказка 5:

Воспользуемся тем, что N диаметрально противоположна S. Тогда угол SA(k)N прямой при всех A(k). Какие ещё углы равны 90 градусам?

Подсказка 6:

Углы SA(k)X(k) прямые, потому что S и X(k) диаметрально противоположны в окружности, описанной вокруг треугольника SA(k)X(k). Тогда SA перпендикулярно какой плоскости? Какие точки на ней лежат?

Показать доказательство

Заметим, что точки A ,A ,...,A
  1 2     n  лежат и на сфере с центром в точке S,  и в одной плоскости. Следовательно, они лежат на окружности ω,  являющейся пересечением сферы с плоскостью. Пусть O  — центр этой окружности. Тогда SO  перпендикулярно плоскости основания и любая точка на прямой SO  равноудалена от всех точек окружности ω.  Поэтому на SO  найдётся и такая точка P,  для которой P S = PA1.  Тогда на сфере σ  с центром в точке P  и радиусом PS  лежат все вершины пирамиды, а также все окружности SAkAk+1.

PIC

Следовательно, на этой сфере лежат все точки Ak  и Xk.  Пусть N  — точка на сфере σ,  диаметрально противоположная точке S.  Покажем, что описанные окружности треугольников Xk− 1AkXk  проходят через точку N.  Поскольку точки N, Xk−1,Xk  и Ak  лежат на сфере, достаточно проверить, что они лежат на сфере, достаточно в одной плоскости. Эта плоскость перпендикулярна прямой SAk  и проходит через точку Ak.  В самом деле, ∠SAkN = 90∘,  поскольку они опирается на диаметр SN  сферы σ,∠SAkXk =90∘ и ∠SAkXk −1 = 90∘,  поскольку они опираются на диаметры SXk  и SXk −1  описанных окружностей треугольников SAkXk  и SAkXk −1.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!