Сечение шара плоскостью
Ошибка.
Попробуйте повторить позже
В пирамиде все боковые рёбра равны. Точка — середина дуги описанной окружности треугольника точка — середина дуги описанной окружности треугольника и т. д., точка — середина дуги описанной окружности треугольника Докажите, что описанные окружности треугольников пересекаются в одной точке.
Подсказка 1:
Давайте поймем, поизучаем сферу, описанную вокруг данной фигуры. Во-первых, почему вообще можно описать сферу? Во-вторых, где у неё центр?
Подсказка 2:
Вокруг многоугольника A₁A₂...Aₙ можно описать окружность, значит, вокруг всей фигуры можно описать сферу. Пусть центр сферы — это точка P. Она равноудалена от точек A, следовательно, лежит на прямой, перпендикулярной плоскости основания и проходящей через S. Что мы можем сказать про точки X? Где они лежат?
Подсказка 3:
Они тоже лежат на этой сфере! Давайте попробуем угадать, где может находиться искомая точка. Попробуйте нарисовать фигуру и провести окружности.
Подсказка 4:
Давайте попробуем доказать, что искомая точка пересечения диаметрально противоположна S. Тогда нужно доказать, что N, X(k−1), X(k) и A(k) лежат на одной плоскости. Как это можно сделать?
Подсказка 5:
Воспользуемся тем, что N диаметрально противоположна S. Тогда угол SA(k)N прямой при всех A(k). Какие ещё углы равны 90 градусам?
Подсказка 6:
Углы SA(k)X(k) прямые, потому что S и X(k) диаметрально противоположны в окружности, описанной вокруг треугольника SA(k)X(k). Тогда SA перпендикулярно какой плоскости? Какие точки на ней лежат?
Заметим, что точки лежат и на сфере с центром в точке и в одной плоскости. Следовательно, они лежат на окружности являющейся пересечением сферы с плоскостью. Пусть — центр этой окружности. Тогда перпендикулярно плоскости основания и любая точка на прямой равноудалена от всех точек окружности Поэтому на найдётся и такая точка для которой Тогда на сфере с центром в точке и радиусом лежат все вершины пирамиды, а также все окружности
Следовательно, на этой сфере лежат все точки и Пусть — точка на сфере диаметрально противоположная точке Покажем, что описанные окружности треугольников проходят через точку Поскольку точки и лежат на сфере, достаточно проверить, что они лежат на сфере, достаточно в одной плоскости. Эта плоскость перпендикулярна прямой и проходит через точку В самом деле, поскольку они опирается на диаметр сферы и поскольку они опираются на диаметры и описанных окружностей треугольников и
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!