Задачи на исследование квадратичной функции
Ошибка.
Попробуйте повторить позже
Известно, что для трёх последовательных натуральных значений аргумента квадратичная функция принимает значения , и соответственно. Найдите наименьшее возможное значение .
Источники:
Подсказка 1
Допустим, что наши три числа это n-1, n и n+1. Наверное, вы уже пробовали их подставлять и вышло, мягко говоря, плоховато... Давайте попробуем подумать немного через график. Что является наименьшим возможным значением на нём и отчего оно зависит?
Подсказка 2
Верно, минимум на графике - это будет вершина параболы. Но что мы подставляем в аргумент, находя значение там? Это либо -b/2a по формуле, либо полусумма корней квадратного трёхчлена. Но ведь ни то, ни другое совсем не зависит от наших последовательных чисел, а только от изначального трёхчлена. Какой вывод тогда можно сделать?
Подсказка 3
Точно, мы можем подставить любые удобные нам три последовательных числа! Другими словами, на графике из-за параллельного переноса, наименьшее значение не поменяется. Тогда можно выбрать просто -1, 0 и 1, откуда просто найти коэффициенты квадратного трёхчлена, решив систему, а потом найти и его минимум.
От параллельного сдвига вдоль минимальное значение не поменяется, потому будем считать, что это значения . Если , то
Тогда .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!