Задачи на исследование квадратичной функции
Ошибка.
Попробуйте повторить позже
При каких целых числах и выражение целое при любых целых
Подсказка 1
Сперва прибегнем к идее, которая часто используется, когда под корнем есть квадратный трёхчлен: выделение полного квадрата. Возможно, это натолкнёт нас на какую-то идею...
Подсказка 2
После выделения полного квадрата под корнем к нему добавляется константа c - (b/4)². По условию корень должен быть целым числом для любого целого x. И тут возникает вопрос: а что будет при достаточно больших x? Не будет ли каких-то проблем с извлечением корня?
Подсказка 3
На самом деле при достаточно больших x эта добавка будет довольно мала по сравнению с полным квадратом. Чем больше полный квадрат, тем дальше от него располагается следующий за ним квадрат. При подстановке всё больших x в конце концов эта добавка станет меньше, чем разница между квадратами соседних чисел, тогда корень не будет целым числом! Что же из этого следует?
Подсказка 4
Это значит, что необходимо равенство добавки нулю. Тогда нетрудно понять, что для достаточности этого условия числу b достаточно быть кратным четвёрке. Попробуем доказать необходимость этого факта. В таких задачах часто помогает подстановка различных "хороших" значений х. Попробуйте поэкспериментировать!
Подсказка 5
Например, обязательно надо подставить x = 0. Тогда получаем, что c = k², k ∈ ℤ. А теперь можно использовать это соотношение и равенство добавки нулю!
Выделим полный квадрат под корнем:
Легко понять, что условий и будет достаточно. Покажем, что они необходимы.
При выражение должно быть целым, значит, необходимо
Если корень является целым числом, то целым является и Применим для выражения в скобках формулу и получим
Но при достаточно больших правая часть становится по модулю меньше единицы. И при этом должна быть целой. Значит, должна быть равна нулю. Следовательно,
при
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!